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A or B?

A or B?

A

BFigure 1: When two persons pass near eah other, their identities an get on-fused.1 IntrodutionProbability distributions over permutations arise in a diverse variety of realworld problems. While they were perhaps �rst studied in the ontext of gam-bling and ard games, they have now been found to be appliable to manyimportant problems in multi-objet traking, information retrieval, webpageranking, preferene eliitation, and voting.As an example, onsider the problem of traking n persons based on a set ofnoisy measurements of identity and position. A typial traking system mightattempt to manage a set of n traks along with an identity orresponding toeah trak, in spite of ambiguities from imperfet identity measurements. Whenthe persons are well separated, the problem is easily deomposed and measure-ments about eah individual an be learly assoiated with a partiular trak.When persons pass near eah other, however, onfusion an arise as their signalsignatures may mix; see Figure 1. After the individuals separate again, theirpositions may be learly distinguishable, but their identities an still be on-fused, resulting in identity unertainty whih must be propagated forward intime with eah person, until additional observations allow for disambiguation.This task of maintaining a belief state for the orret assoiation between objettraks and objet identities while aounting for loal mixing events and sensorobservations, was introdued in (Shin et al., 2003) and is alled the identitymanagement problem.The identity management problem poses a hallenge for probabilisti infer-ene beause it needs to address the fundamental ombinatorial hallenge thatthere is a fatorial number of assoiations to maintain between traks and iden-tities. Distributions over the spae of all permutations require storing at least1



n! − 1 numbers, an infeasible task for all but very small n. Moreover, typialompat representations, suh as graphial models, annot e�iently apturethe mutual exlusivity onstraints assoiated with permutations.While there have been many approahes for oping with the fatorial om-plexity of maintaining a distribution over permutations, most attak the problemusing one of two ideas � storing and updating a small subset of likely permu-tations, or, as in our ase, restriting onsideration to a tratable subspae ofpossible distributions. (Willsky, 1978) was the �rst to formulate the probabilis-ti �ltering/smoothing problem for group-valued random variables. He proposedan e�ient FFT based approah of transforming between primal and Fourierdomains so as to avoid ostly onvolutions, and provided e�ient algorithmsfor dihedral and metayli groups. (Kueh et al., 1999) show that probabilitydistributions on the group of permutations are well approximated by a smallsubset of Fourier oe�ients of the atual distribution, allowing for a prinipledtradeo� between auray and omplexity. The approah taken in (Shin et al.,2005; Shumitsh et al., 2005; Shumitsh et al., 2006) an be seen as an algo-rithm for maintaining a partiular �xed subset of Fourier oe�ients of the logdensity. Most reently, (Kondor et al., 2007) allow for a general set of Fourieroe�ients, but assume a restritive form of the observation model in order toexploit an e�ient FFT fatorization.In this work1, we present several ontributions whih generalize and improveupon the past related work. We present a new and simple algorithm, alledKroneker Conditioning, whih performs all probabilisti inferene operationsompletely in the Fourier domain, allowing for a prinipled tradeo� betweenomputational omplexity and approximation auray. Our approah is fullygeneral, in the sense that it an address any transition model or likelihoodfuntion that an be represented in the Fourier domain, suh as those used inprevious work, and an represent the probability distribution using any desirednumber of Fourier oe�ients. We analyze the errors whih an be introduedby bandlimiting a probability distribution and show how they propagate withrespet to inferene operations. Approximate onditioning based on bandlimiteddistributions an sometimes yield Fourier oe�ients whih do not orrespondto any valid distribution, even returning negative �probabilities� on oasion� we address this issue by presenting a method for projeting the result bakinto the polytope of oe�ients whih orrespond to nonnegative and onsistentmarginal probabilities using an e�ient quadrati program. Finally, we empir-ially evaluate the auray of approximate inferene on simulated data drawnfrom our model and further demonstrate the e�etiveness of our approah on areal amera-based multi-person traking senario.1A shorter version this work appeared in (Huang et al., 2007). We provide a more ompletedisussion of our Fourier based methods in this extended paper.
2



(a) Before (b) AfterFigure 2: Identity Management example. Three people, Alie, Bob and Charlieenter a room and we reeive a position measurement for eah person at eahtime step. With no way to observe identities inside the room, however, we areonfused whenever two traks get too lose. In this example, trak 1 rosses withtrak 2, then with trak 3, then leaves the room, at whih point it is observedthat the identity at Trak 1 is in fat Bob.2 Filtering over permutationsAs a prelude to the general problem statement, we begin with a simple identitymanagement problem on three traks (illustrated in Figure 2) whih we will useas a running example. In this problem, we observe a stream of loalization datafrom three people walking inside a room. Exept for a amera positioned at theentrane, however, there is no way to distinguish between identities one theyare inside. In this example, an internal traker delares that two traks have`mixed' whenever they get too lose to eah other and announes the identityof any trak that enters or exits the room.In our partiular example, three people, Alie, Bob and Cathy, enter a roomseparately, walk around, and we observe Bob as he exits. The events for ourpartiular example in the �gure are reorded in Table 1. Sine Traks 2 and 3never mix, we know that Cathy annot be in Trak 2 in the end, and furthermore,sine we observe Bob to be in Trak 1 when he exits, we an dedue that Cathymust have been in Trak 3, and therefore Alie must have been in Trak 2.Our simple example illustrates the ombinatorial nature of the problem � inpartiular, reasoning about the mixing events allows us to exatly deide whereAlie and Cathy were even though we only made an observation about Bob atthe end. Event # Event Type1 Traks 1 and 2 mixed2 Traks 1 and 3 mixed3 Observed Identity Bob at Trak 1Table 1: Table of Mixing and Observation events logged by the traker.3



In identity management, a permutation σ represents a joint assignment ofidentities to internal traks, with σ(i) being the trak belonging to the ithidentity. When people walk too losely together, their identities an be onfused,leading to unertainty over σ. To model this unertainty, we use a HiddenMarkov Model (HMM) on permutations, whih is a joint distribution over latentpermutations σ(1), . . . , σ(T ), and observed variables z(1), . . . , z(T ) whih fatorsas:
P (σ(1), . . . , σ(T ), z(1), . . . , z(T )) = P (σ(1))P (z(1)|σ(1))

T∏

t=2

P (zt|σ(t))·P (σ(t)|σ(t−1)).The onditional probability distribution P (σ(t)|σ(t−1)) is alled the transitionmodel, and might re�et, for example, that the identities belonging to twotraks were swapped with some probability by a mixing event. The distribution
P (z(t)|σ(t)) is alled the observation model, whih might, for example, apturea distribution over the olor of lothing for eah individual.We fous on �ltering, in whih one queries the HMM for the posteriorat some time step, onditioned on all past observations. Given the distribu-tion P (σ(t)|z(1), . . . , z(t)), we reursively ompute P (σ(t+1)|z(1), . . . , z(t+1)) intwo steps: a predition/rollup step and a onditioning step. Taken together,these two steps form the well known Forward Algorithm (Rabiner, 1989). Thepredition/rollup step multiplies the distribution by the transition model andmarginalizes out the previous time step:

P (σ(t+1)|z(1), . . . , z(t)) =
∑

σ(t)

P (σ(t+1)|σ(t))P (σ(t)|z(1), . . . , z(t)).The onditioning step onditions the distribution on an observation z(t+1) usingBayes rule:
P (σ(t+1)|z(1), . . . , z(t+1)) ∝ P (z(t+1)|σ(t+1))P (σ(t+1)|z(1), . . . , z(t)).Sine there are n! permutations, a single iteration of the algorithm requires

O((n!)2) �ops and is onsequently intratable for all but very small n. Theapproah that we advoate is to maintain a ompat approximation to the truedistribution based on the Fourier transform. As we disuss later, the Fourierbased approximation is equivalent to maintaining a set of low-order marginals,rather than the full joint, whih we regard as being analogous to an AssumedDensity Filter (Boyen & Koller, 1998). Although we fous on HMMs and �lter-ing for onreteness, the approah we desribe is useful for other probabilistiinferene tasks over permutations, suh as ranking objets and modeling userpreferenes.
4



3 Probability Distributions over the SymmetriGroupA permutation on n elements is a one-to-one mapping of the set {1, . . . , n} intoitself and an be written as a tuple,
σ = [σ(1) σ(2) . . . σ(n)],where σ(i) denotes where the ith element is mapped under the permutation(alled one line notation). For example, σ = [2 3 1 4 5] means that σ(1) = 2,

σ(2) = 3, σ(3) = 1, σ(4) = 4, and σ(5) = 5. The set of all permutations on nelements forms a group under the operation of funtion omposition � that is,if σ1 and σ2 are permutations, then
σ1σ2 = [σ1(σ2(1)) σ1(σ2(2)) . . . σ1(σ2(n))]is itself a permutation. The set of all n! permutations is alled the SymmetriGroup, or just Sn.We will atually notate the elements of Sn using the more standard ylenotation, in whih a yle (i, j, k, . . . , ℓ) refers to the permutation whih maps

i to j, j to k, . . . , and �nally ℓ to i. Though not every permutation an bewritten as a single yle, any permutation an always be written as a produt ofdisjoint yles. For example, the permutation σ = [2 3 1 4 5] written in ylenotation is σ = (1, 2, 3)(4)(5). The number of elements in a yle is alled theyle length and we typially drop the length 1 yles in yle notation when itreates no ambiguity � in our example, σ = (1, 2, 3)(4)(5) = (1, 2, 3). We referto the identity permutation (whih maps every element to itself) as ǫ.A probability distribution over permutations an be thought of as a jointdistribution on the n random variables (σ(1), . . . , σ(n)) subjet to the mutualexlusivity onstraints that P (σ : σ(i) = σ(j)) = 0 whenever i 6= j. For ex-ample, in the identity management problem, Alie and Bob annot both bein Trak 1 simultaneously. Due to the fat that all of the σ(i) are oupled inthe joint distribution, graphial models, whih might have otherwise exploitedan underlying onditional independene struture, are ine�etive. Instead, ourFourier based approximation ahieves ompatness by exploiting the algebraistruture of the problem.3.1 Compat summary statistisWhile ontinuous distributions like Gaussians are typially summarized usingmoments (like mean and variane), or more generally, expeted features, it isnot immediately obvious how one might, for example, ompute the `mean' of adistribution over permutations. There is a simple method that might spring tomind, however, whih is to think of the permutations as permutation matriesand to average the matries instead. 5



Example 1. For example, onsider the two permutations ǫ, (1, 2) ∈ S3 (ǫ is theidentity and (1, 2) swaps 1 and 2). We an assoiate the identity permutation ǫwith the 3 × 3 identity matrix, and similarly, we an assoiate the permutation
(1, 2) with the matrix:

(1, 2) 7→




0 1 0
1 0 0
0 0 1


 .The `average' of ǫ and (1, 2) is therefore:

1

2




1 0 0
0 1 0
0 0 1


+

1

2




0 1 0
1 0 0
0 0 1


 =




1/2 1/2 0
1/2 1/2 0
0 0 1


 .As we will later show, omputing the `mean' (as desribed above) of a dis-tribution over permutations, P , ompatly summarizes P by storing a marginaldistribution over eah of σ(1), σ(2), . . . , σ(n), whih requires storing only O(n2)numbers rather than the full O(n!) for the exat distribution. As an example,one possible summary might look like:

P̂ =




Alie Bob CathyTrak 1 2/3 1/6 1/6Trak 2 1/3 1/3 1/3Trak 3 0 1/2 1/2


 .Suh doubly stohasti ��rst-order summaries� have been studied in varioussettings (Shin et al., 2003; Helmbold & Warmuth, 2007). In identity manage-ment (Shin et al., 2003)2, �rst-order summaries maintain, for example,

P (Alie is at Trak 1) = 2/3,

P (Bob is at Trak 3) = 1/2.What annot be aptured by �rst-order summaries however, are the higher orderstatements like:
P (Alie is in Trak 1 and Bob is in Trak 2) = 0.Over the next two setions, we will show that the �rst-order summary of adistribution P (σ) an equivalently be viewed as the lowest frequeny oe�ientsof the Fourier transform of P (σ), and that by onsidering higher frequenies,2Stritly speaking, a map from identities to traks is not a permutation sine a permutationalways maps a set into itself. In fat, the set of all suh identity-to-trak assignments does notatually form a group sine there is no way to ompose any two suh assignments to obtaina legitimate group operation. We abuse the notation by referring to these assignments as agroup, but really the elements of the group here should be thought of as the `deviation' fromthe original identity-to-trak assignment (where only the traks are permuted, for example,when they are onfused). In the group theoreti language, there is a faithful group ation of

Sn on the set of all identity-to-trak assignments.6



we an apture higher order marginal probabilities in a prinipled fashion. Fur-thermore, the Fourier theoreti perspetive, as we will show, provides a naturalframework for formulating inferene operations with respet to our ompatsummaries. In a nutshell, we will view the predition/rollup step as a onvolu-tion and the onditioning step as a pointwise produt � then we will formulatethe two inferene operations in the Fourier domain as a pointwise produt andonvolution, respetively.4 The Fourier transform on �nite groupsOver the last �fty years, the Fourier Transform has been ubiquitously applied toeverything digital, partiularly with the invention of the Fast Fourier Transform.On the real line, the Fourier Transform is a well-studied method for deomposinga funtion into a sum of sine and osine terms over a spetrum of frequenies.Perhaps less familiar though, is its group theoreti generalization, whih wereview in this setion with an eye towards approximating funtions on Sn. Forfurther information, see (Diaonis, 1988) and (Terras, 1999).4.1 Group representation theoryThe generalized de�nition of the Fourier Transform relies on the theory of grouprepresentations, whih formalize the onept of assoiating permutations withmatries and are used to onstrut a omplete basis for the spae of funtionson a group G, thus also playing a role analogous to that of sinusoids on the realline.De�nition 2. A representation of a group G is a map ρ from G to a set ofinvertible dρ × dρ matrix operators whih preserves algebrai struture in thesense that for all σ1, σ2 ∈ G, ρ(σ1σ2) = ρ(σ1) · ρ(σ2). The matries whih lie inthe image of ρ are alled the representation matries, and we will refer to dρ asthe degree of the representation.The requirement that ρ(σ1σ2) = ρ(σ1) · ρ(σ2) is analogous to the propertythat ei(θ1+θ2) = eiθ1 · eiθ2 for the onventional sinusoidal basis. Eah matrixentry, ρij(σ) de�nes some funtion over Sn:
ρ(σ) =




ρ11(σ) ρ12(σ) · · · ρ1dρ
(σ)

ρ21(σ) ρ22(σ) · · · ρ2dρ
(σ)... ... . . . ...

ρdρ1(σ) ρdρ2(σ) · · · ρdρdρ
(σ)


 , (4.1)and onsequently, eah representation ρ simultaneously de�nes a set of d2

ρ fun-tions over Sn. We will eventually think of group representations as the set ofFourier basis funtions onto whih we an projet arbitrary funtions.Example 3. We begin by showing three examples of representations on thesymmetri group. 7



1. The simplest example of a representation is alled the trivial representa-tion ρ(n) : Sn → R1×1, whih maps eah element of the symmetri groupto 1, the multipliative identity on the real numbers. The trivial represen-tation is atually de�ned for every group, and while it may seem unworthyof mention, it plays the role of the onstant basis funtion in the Fouriertheory.2. The �rst-order permutation representation of Sn, whih we alluded to inExample 1, is the degree n representation, τ(n−1,1) (we explain the termi-nology in Setion 5) , whih maps a permutation σ to its orrespondingpermutation matrix given by [τ(n−1,1)(σ)]ij = 1 {σ(j) = i}. For example,the �rst-order permutation representation on S3 is given by:
τ(2,1)(ǫ) =




1 0 0
0 1 0
0 0 1


 τ(2,1)(1, 2) =




0 1 0
1 0 0
0 0 1




τ(2,1)(2, 3) =




1 0 0
0 0 1
0 1 0


 τ(2,1)(1, 3) =




0 0 1
0 1 0
1 0 0




τ(2,1)(1, 2, 3) =




0 0 1
1 0 0
0 1 0


 τ(2,1)(1, 3, 2) =




0 1 0
0 0 1
1 0 0


3. The alternating representation of Sn, maps a permutation σ to the deter-minant of τ(n−1,1)(σ), whih is +1 if σ an be equivalently written as theomposition of an even number of pairwise swaps, and −1 otherwise. Wewrite the alternating representation as ρ(1,...,1) with n 1's in the subsript.For example, on S4, we have:

ρ(1,1,1,1)((1, 2, 3)) = ρ(1,1,1,1)((13)(12)) = +1.The alternating representation an be interpreted as the `highest frequeny'basis funtion on the symmetri group, intuitively due to its high sensitivityto swaps. For example, if τ(1,...,1)(σ) = 1, then τ(1,...,1)((12)σ) = −1.In identity management, it may be reasonable to believe that the jointprobability over all n identity labels should only hange by a little if justtwo objets are mislabeled due to swapping � in this ase, ignoring thebasis funtion orresponding to the alternating representation should stillprovide an aurate approximation to the joint distribution.In general, a representation orresponds to an overomplete set of funtionsand therefore does not onstitute a valid basis for any subspae of funtions.For example, the set of nine funtions on S3 orresponding to τ(2,1) span onlyfour dimensions, beause there are six normalization onstraints (three on therow sums and three on the olumn sums), of whih �ve are independent � and8



so there are �ve redundant dimensions. To �nd a valid omplete basis for thespae of funtions on Sn, we will need to �nd a family of representations whosebasis funtions are independent, and span the entire n!-dimensional spae offuntions.In the following two de�nitions, we will provide two methods for onstrut-ing a new representation from old ones suh that the set of funtions on Snorresponding to the new representation is linearly dependent on the old rep-resentations. Somewhat surprisingly, it an be shown that dependenies whiharise amongst the representations an always be reognized in a ertain sense,to ome from the two possible following soures (Serre, 1977).De�nition 4.1. Equivalene. Given a representation ρ1 and an invertible matrix C, onean de�ne a new representation ρ2 by �hanging the basis� for ρ1:
ρ2(σ) , C−1 · ρ1(σ) · C. (4.2)We say, in this ase, that ρ1 and ρ2 are equivalent as representations(written ρ1 ≡ ρ2), and the matrix C is known as the intertwining operator.Note that dρ1 = dρ2 .It an be heked that the funtions orresponding to ρ2 an be reon-struted from those orresponding to ρ1. For example, if C is a permuta-tion matrix, the matrix entries of ρ2 are exatly the same as the matrixentries of ρ1, only permuted.2. Diret Sum. Given two representations ρ1 and ρ2, we an always forma new representation, whih we will write as ρ1 ⊕ ρ2, by de�ning:

ρ1 ⊕ ρ2(σ) ,

[
ρ1(σ) 0

0 ρ2(σ)

]
.

ρ1 ⊕ ρ2 is alled the diret sum representation. For example, the diretsum of two opies of the trivial representation is:
ρ(n) ⊕ ρ(n)(σ) =

[
1 0
0 1

]
,with four orresponding funtions on Sn, eah of whih is learly depen-dent upon the trivial representation itself.Most representations an be seen as being equivalent to a diret sum ofstritly smaller representations. Whenever a representation ρ an be deom-posed as ρ ≡ ρ1 ⊕ ρ2, we say that ρ is reduible. As an example, we now showthat the �rst-order permutation representation is a reduible representation.Example 5. Instead of using the standard basis vetors {e1, e2, e3}, the �rst-order permutation representation τ(2,1) an be equivalently written with respet9



to a new basis {v1, v2, v3}, where:
v1 =

e1 + e2 + e3
|e1 + e2 + e3|

,

v2 =
−e1 + e2
| − e1 + e2|

,

v3 =
−e1 − e2 + 2e3
| − e1 − e2 + 2e3|

.To `hange the basis', we write the new basis vetors as olumns in a matrix C:
C =



| | |
v1 v2 v3
| | |


 =




1√
3
−

√
2

2 − 1√
6

1√
3

√
2

2 − 1√
6

1√
3

0 2√
6


 ,and onjugate the representation τ(2,1) by C (as in Equation 4.2) to obtain theequivalent representation C−1 · τ(2,1)(σ) · C:

C−1τ(2,1)(ǫ)C =

2

4

1 0 0
0 1 0
0 0 1

3

5 C−1τ(2,1)(1, 2)C =

2

4

1 0 0
0 −1 0
0 0 1

3

5

C−1τ(2,1)(2, 3)C =

2

6

4

1 0 0

0 1
2

√
3

2

0
√

3
2

−

1
2

3

7

5
C−1τ(2,1)(1, 3)C =

2

6

4

1 0 0

0 1
2

−

√
3

2

0 −

√
3

2
−

1
2

3

7

5

C−1τ(2,1)(1, 2, 3)C =

2

6

4

1 0 0

0 −

1
2

−

√
3

2

0
√

3
2

−

1
2

3

7

5
C−1τ(2,1)(1, 3, 2)C =

2

6

4

1 0 0

0 −

1
2

√
3

2

0 −

√
3

2
−

1
2

3

7

5The interesting property of this partiular basis is that the new representationmatries all appear to be the diret sum of two smaller representations, a trivialrepresentation, ρ(3) as the top left blok, and a degree 2 representation in thebottom right whih we will refer to as ρ(2,1).Geometrially, the representation ρ(2,1) an also be thought of as the groupof rigid symmetries of the equilateral triangle with verties:
P1 =

[ √
3/2

1/2

]
, P2 =

[
−
√

3/2
1/2

]
, P3 =

[
0
−1

]
.The matrix ρ(2,1)(1, 2) ats on the triangle by re�eting about the x-axis, and

ρ(2,1)(1, 2, 3) by a π/3 ounter-lokwise rotation.In general, there are in�nitely many reduible representations. For example,given any dimension d, there is a representation whih maps every element of agroup G to the d × d identity matrix (the diret sum of d opies of the trivialrepresentation). However, for any �nite group, there exists a �nite olletion of10



σ ρ(3) ρ(2,1) ρ(1,1,1)

ǫ 1

[
1 0
0 1

]
1

(1, 2) 1

[
−1 0
0 1

]
−1

(2, 3) 1

[
1/2

√
3/2√

3/2 −1/2

]
−1

(1, 3) 1

[
1/2 −

√
3/2

−
√

3/2 −1/2

]
−1

(1, 2, 3) 1

[
−1/2 −

√
3/2√

3/2 −1/2

]
1

(1, 3, 2) 1

[
−1/2

√
3/2

−
√

3/2 −1/2

]
1Table 2: The irreduible representation matries of S3.atomi representations whih an be used to build up any other representationusing the diret sum operation. These representations are referred to as theirreduibles of a group, and they are de�ned simply to be the olletion ofrepresentations (up to equivalene) whih are not reduible. It an be shownthat any representation of a �nite group G is equivalent to a diret sum ofirreduibles (Diaonis, 1988), and hene, for any representation τ , there existsa matrix C for whih

C−1 · τ · C =
⊕

ρ

zρ⊕

j=1

ρ,where ρ ranges over all distint irreduible representations of the group G, andthe inner ⊕ refers to some �nite number (zρ) of opies of eah irreduible ρ.As it happens, there are only three irreduible representations of S3 (Dia-onis, 1988), the trivial representation ρ(3), the degree 2 representation ρ(2,1),and the alternating representation ρ(1,1,1). The omplete set of irreduible rep-resentation matries of S3 are shown in the Table 2. Unfortunately, the analysisof the irreduible representations for n > 3 is far more ompliated and wepostpone this more general disussion for Setion 5.4.2 The Fourier transformThe link between group representation theory and Fourier analysis is given bythe elebrated Peter-Weyl theorem ((Diaonis, 1988; Terras, 1999; Sagan, 2001))whih says that the matrix entries of the irreduibles of G form a omplete set11



of orthogonal basis funtions on G.3 The spae of funtions on S3, for example,is orthogonally spanned by the 3! funtions ρ(3)(σ), [ρ(2,1)(σ)]1,1, [ρ(2,1)(σ)]1,2,
[ρ(2,1)(σ)]2,1, [ρ(2,1)(σ)]2,2 and ρ(1,1,1)(σ), where [ρ(σ)]ij denotes the (i, j) entryof the matrix ρ(σ).As a replaement for projeting a funtion f onto a omplete set of sinusoidalbasis funtions (as one would do on the real line), the Peter-Weyl theoremsuggests instead to projet onto the basis provided by the irreduibles of G. Ason the real line, this projetion an be done by omputing the inner produtof f with eah element of the basis, and we de�ne this operation to be thegeneralized form of the Fourier Transform.De�nition 6. Let f : G → R be any funtion on a group G and let ρ be anyrepresentation on G. The Fourier Transform of f at the representation ρ isde�ned to be the matrix of oe�ients:

f̂ρ =
∑

σ

f(σ)ρ(σ). (4.3)The olletion of Fourier Transforms at all irreduible representations of G formthe Fourier Transform of f .There are two important points whih distinguish this Fourier Transformfrom its familiar formulation on the real line � �rst, the outputs of the transformare matrix-valued, and seond, the inputs to f̂ are representations of G ratherthan real numbers. As in the familiar formulation, the Fourier Transform isinvertible and the inversion formula is expliitly given by the Fourier InversionTheorem.Theorem 7 (Fourier Inversion Theorem).
f(σ) =

1

|G|
∑

λ

dρλ
Tr [f̂T

ρλ
· ρλ(σ)

]
, (4.4)where λ indexes over the olletion of irreduibles of G.Note that the trae term in the inverse Fourier Transform is just the `ma-trix dot produt' between f̂ρλ

and ρλ(σ), sine Tr [AT · B
]

= 〈ve(A), ve(B)〉,where by ve we mean mapping a matrix to a vetor on the same elementsarranged in olumn-major order.We now provide several examples for intuition. For funtions on the real line,the Fourier Transform at zero frequeny gives the DC omponent of a signal.The same holds true for funtions on a group; If f : G → R is any funtion,3Tehnially the Peter-Weyl result, as stated here, is only true if all of the representationmatries are unitary. That is, ρ(σ)∗ρ(σ) = I for all σ ∈ Sn, where the matrix A∗ is theonjugate transpose of A. For the ase of real-valued (as opposed to omplex-valued) matries,however, the de�nitions of unitary and orthogonal matries oinide.While most representations are not unitary, there is a standard result from representa-tion theory whih shows that for any representation of G, there exists an equivalent unitaryrepresentation. 12



then sine ρ(n) = 1, the Fourier Transform of f at the trivial representationis onstant, with f̂ρ(n)
=
∑

σ f(σ). Thus, for any probability distribution P ,we have P̂ρ(n)
= 1. If P were the uniform distribution, then P̂ρ = 0 at everyirreduible ρ exept at the trivial representation.The Fourier Transform at τ(n−1,1) also has a simple interpretation:

[f̂τ(n−1,1)
]ij =

∑

σ∈Sn

f(σ)[τ(n−1,1)(σ)]ij =
∑

σ∈Sn

f(σ)1 {σ(j) = i} =
∑

σ:σ(j)=i

f(σ).The set ∆ij = {σ : σ(j) = i} is the set of the (n − 1)! possible permutationswhih map element j to i. In identity management, ∆ij an be thought of asthe set of assignments whih, for example, have Alie at Trak 1. If P is a distri-bution, then P̂τ(n−1,1)
is a matrix of �rst-order marginal probabilities, where the

(i, j)-th element is the marginal probability that a random permutation drawnfrom P maps element j to i.Example 8. Consider the following probability distribution on S3:
σ ǫ (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

P (σ) 1/3 1/6 1/3 0 1/6 0The set of all �rst order marginal probabilities is given by the Fourier trans-form at τ(2,1):
P̂τ(2,1)

=




A B C

1 2/3 1/6 1/6
2 1/3 1/3 1/3
3 0 1/2 1/2


 .In the above matrix, eah olumn j represents a marginal distribution over thepossible traks that identity j an map to under a random draw from P . Wesee, for example, that Alie is at Trak 1 with probability 2/3, or at Trak 2with probability 1/3. Simultaneously, eah row i represents a marginal distri-bution over the possible identities that ould have been mapped to trak i undera random draw from P . In our example, Bob and Cathy are equally likely tobe in Trak 3, but Alie is de�nitely not in Trak 3. Sine eah row and eaholumn is itself a distribution, the matrix P̂τ(2,1)

must be doubly stohasti. Wewill elaborate on the onsequenes of this observation later.The Fourier transform of the same distribution at all irreduibles is:
P̂ρ(3)

= 1, P̂ρ(2,1)
=

[
1/4

√
3/4√

3/4 1/4

]
, P̂ρ(1,1,1)

= 0.The �rst-order permutation representation, τ(n−1,1), aptures the statistisof how a random permutation ats on a single objet irrespetive of where allof the other n − 1 objets are mapped, and in doing so, ompatly summa-rizes the distribution with only O(n2) numbers. Unfortunately, as mentioned in13



Setion 3, the Fourier transform at the �rst-order permutation representationannot apture more ompliated statements like:
P (Alie and Bob oupy Traks 1 and 2) = 0.To avoid ollapsing away so muh information, we might de�ne riher summarystatistis that might apture `higher-order' e�ets. We de�ne the seond-orderunordered permutation representation by:
[τ(n−2,2)(σ)]{i,j},{k,ℓ} = 1 {σ({k, ℓ}) = {i, j}} ,where we index the matrix rows and olumns by unordered pairs {i, j}. Theondition inside the indiator funtion states that the representation aptureswhether the pair of objets {k, ℓ} maps to the pair {i, j}, but is indi�erent withrespet to the ordering; i.e., either k 7→ i and ℓ 7→ j, or, k 7→ j and ℓ 7→ i.Example 9. For n = 4, there are six possible unordered pairs: {1, 2},{1, 3},{1, 4},{2, 3},{2, 4},and {3, 4}. The matrix representation of the permutation (1, 2, 3) is:

τ(2,2)(1, 2, 3) =

2

6

6

6

6

6

6

6

4

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{1, 2} 0 0 0 1 0 0
{1, 3} 1 0 0 0 0 0
{1, 4} 0 0 0 0 1 0
{2, 3} 0 1 0 0 0 0
{2, 4} 0 0 0 0 0 1
{3, 4} 0 0 1 0 0 0

3

7

7

7

7

7

7

7

5

.The seond order ordered permutation representation, τ(n−2,1,1), is de�nedsimilarly:
[τ(n−2,1,1)(σ)](i,j),(k,ℓ) = 1 {σ((k, ℓ)) = (i, j)} ,where (k, ℓ) denotes an ordered pair. Therefore, [τ(n−2,1,1)(σ)](i,j),(k,ℓ) is 1 ifand only if σ maps k to i and ℓ to j.As in the �rst-order ase, the Fourier transform of a probability distribu-tion at τ(n−2,2), returns a matrix of marginal probabilities of the form: P (σ :

σ({k, ℓ}) = {i, j}), whih aptures statements like, "Alie and Bob oupyTraks 1 and 2 with probability 1/2". Similarly, the Fourier transform at
τ(n−2,1,1) returns a matrix of marginal probabilities of the form P (σ : σ((k, ℓ)) =
(i, j)), whih aptures statements like, "Alie is in Trak 1 and Bob is in Trak2 with probability 9/10".We an go further and de�ne third-order representations, fourth-order rep-resentations, and so on. In general however, the permutation representationsas they have been de�ned above are reduible, intuitively due to the fat thatit is possible to reover lower order marginal probabilities from higher ordermarginal probabilities. For example, one an reover the normalization on-stant (orresponding to the trivial representation) from the �rst order matrixof marginals by summing aross either the rows or olumns, and the �rst ordermarginal probabilities from the seond order marginal probabilities by summingaross appropriate matrix entries. To truly leverage the mahinery of Fourieranalysis, it is important to understand the Fourier transform at the irreduiblesof the symmetri group, and in the next setion, we show how to derive the ir-reduible representations of the Symmetri group by �rst de�ning permutationrepresentations, then �subtrating o� the lower-order e�ets�.14



5 Representation theory on the Symmetri groupIn this setion, we provide a brief introdution to the representation theoryof the Symmetri group. Rather than giving a fully rigorous treatment of thesubjet, our goal is to give some intuition about the kind of information whihan be aptured by the irreduible representations of Sn. Roughly speaking,we will show that Fourier transforms on the Symmetri group, instead of beingindexed by frequenies, are indexed by partitions of n (tuples of numbers whihsum to n), and ertain partitions orrespond to more omplex basis funtionsthan others. For proofs, we point the reader to onsult: (Diaonis, 1989; James& Kerber, 1981; Sagan, 2001; Vershik & Okounkov, 2006).Instead of the singleton or pairwise marginals whih were desribed in theprevious setion, we will now fous on using the Fourier oe�ients of a distri-bution to query a muh wider lass of marginal probabilities. As an example, wewill be able to ompute the following (more ompliated) marginal probabilityon S6 using Fourier oe�ients:
P

0

@σ : σ

0

@

8

<

:

1 2 3
4 5
6

9

=

;

1

A =

8

<

:

1 2 6
4 5
3

9

=

;

1

A , (5.1)whih we interpret as the joint marginal probability that the rows of the diagramon the left map to orresponding rows on the right as unordered sets. In otherwords, Equation 5.1 is the joint probability that unordered set {1, 2, 3} maps to
{1, 2, 6}, the unordered pair {4, 5} maps to {4, 5}, and the singleton {6} mapsto {3}.The diagrams in Equation 5.1 are known as Ferrer's diagrams and are om-monly used to visualize partitions of n, whih are de�ned to be unordered tuplesof positive integers, λ = (λ1, . . . , λℓ), whih sum to n. For example, λ = (3, 2)is a partition of n = 5 sine 3 + 2 = 5. Usually we write partitions as weaklydereasing sequenes by onvention, so the partitions of n = 5 are:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1),and their respetive Ferrers diagrams are:
, , , , , , .A Young tabloid is an assignment of the numbers {1, . . . , n} to the boxes ofa Ferrers diagram for a partition λ, where eah row represents an unorderedset. There are 6 Young tabloids orresponding to the partition λ = (2, 2), forexample:



1 2
3 4

ff

,



1 3
2 4

ff

,



1 4
2 3

ff

,



2 3
1 4

ff

,



2 4
1 3

ff

,



3 4
1 2

ff

.The Young tabloid, 1 2
3 4 , for example, represents the two underordered sets

{1, 2} and {3, 4}, and if we were interested in omputing the joint probability15



that σ({1, 2}) = {3, 4} and σ({3, 4}) = {1, 2}, then we ould write the problemin terms of Young tabloids as:
P

„

σ : σ

„

1 2
3 4

ff«

=



3 4
1 2

ff«

.In general, we will be able to use the Fourier oe�ients at irreduible repre-sentations to ompute the marginal probabilities of Young tabloids. As we shallsee, with the help of the James Submodule theorem (James & Kerber, 1981),the marginals orresponding to �simple� partitions will require very few Fourieroe�ients to ompute, whih is one of the main strengths of working in theFourier domain.Example 10. Imagine three separate rooms ontaining two traks eah, inwhih Alie and Bob are in room 1 oupying Traks 1 and 2; Cathy and Davidare in room 2 oupying Traks 3 and 4; and Eri and Frank are in room 3oupying Traks 5 and 6, but we are not able to distinguish whih person is atwhih trak in any of the rooms. Then
P

0

@σ :

0

@

8

<

:

A B
C D
E F

9

=

;

1

A→

8

<

:

1 2
3 4
5 6

9

=

;

1

A = 1.It is in fat, possible to reast the �rst-order marginals whih were desribedin the previous setion in the language of Young tabloids by notiing that,for example, if 1 maps to 1, then the unordered set {2, . . . , n} must map to
{2, . . . , n} sine permutations are one-to-one mappings. The marginal proba-bility that σ(1) = 1, then, is equal to the marginal probability that σ(1) = 1and σ({2, . . . , n}) = {2, . . . , n}. If n = 6, then the marginal probability writtenusing Young tabloids is:

P

„

σ : σ

„

2 3 4 5 6
1

ff«

=



2 3 4 5 6
1

ff«

.The �rst-order marginal probabilities orrespond, therefore, to the marginalprobabilities of Young tabloids of shape λ = (n− 1, 1).Likewise, the seond-order unordered marginals orrespond to Young tabloidsof shape λ = (n−2, 2). If n = 6 again, then the marginal probability that {1, 2}maps to {2, 4} orresponds to the following marginal probability for tabloids:
P

„

σ : σ

„

3 4 5 6
1 2

ff«

=



1 3 5 6
2 4

ff«

.The seond-order ordered marginals are aptured at the partition λ = (n−
2, 1, 1). For example, the marginal probability that {1} maps to {2} and {2}maps to {4} is given by:

P
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A .16



And �nally, we remark that the (1, . . . , 1) partition of n reovers all originalprobabilities sine it asks for a joint distribution over σ(1), . . . , σ(n). The or-responding matrix of marginals has n!× n! entries.To see how the marginal probabilities of Young tabloids of shape λ an bethought of as Fourier oe�ients, we will de�ne a representation (whih we allthe permutation representation) assoiated with λ and show that the Fouriertransform of a distribution at a permutation representation gives marginal prob-abilities. We begin by �xing an ordering on the set of possible Young tabloids,
{t1}, {t2}, . . . , and de�ne the permutation representation τλ(σ) to be the matrix:

[τλ(σ)]ij =

{
1 if σ({tj}) = {ti}
0 otherwise . (5.2)It an be heked that the funtion τλ is indeed a valid representation of theSymmetri group, and therefore we an ompute Fourier oe�ients at τλ. If

P (σ) is a probability distribution, then
[
P̂τλ

]
ij

=
∑

σ∈Sn

P (σ) [τλ(σ)]ij ,

=
∑

{σ : σ({tj})={ti}}
P (σ),

= P (σ : σ({tj}) = {ti}),and therefore, the matrix of marginals orresponding to Young tabloids of shape
λ is given exatly by the Fourier transform at the representation τλ.As we showed earlier, the simplest marginals (the zeroth order normalizationonstant), orrespond to the Fourier transform at τ(n), while the �rst-ordermarginals orrespond to τ(n−1,1), and the seond-order unordered marginalsorrespond to τ(n−2,2). The list goes on and on, with the marginals getting moreompliated; At the other end of the spetrum, we have the Fourier oe�ientsat the representation τ(1,1,...,1) whih exatly reover the original probabilities
P (σ).We use the word `spetrum' suggestively here, beause the di�erent levels ofomplexity for the marginals are highly reminisent of the di�erent frequeniesfor real-valued signals, and a natural question to ask is how the partitions mightbe ordered with respet to the `omplexity' of the orresponding basis funtions.In partiular how might one haraterize this vague notion of omplexity for agiven partition?The `orret' haraterization, as it turns out, is to use the dominane or-dering of partitions, whih, unlike the ordering on frequenies, is not a linearorder, but rather, a partial order.De�nition 11 (Dominane Ordering). Let λ, µ be partitions of n. Then λD µ(we say λ dominates µ), if for eah i, ∑i

k=1 λk ≥
∑i

k=1 µk.For example, (4, 2)D(3, 2, 1) sine 4 ≥ 3, 4+2 ≥ 3+2, and 4+2+0 ≥ 3+2+1.However, (3, 3) and (4, 1, 1) annot be ompared with respet to the dominane17



(a) Dominane ordering for
n = 6. (b) Fourier oe�ient matries for S6.Figure 3: The dominane order for partitions of n = 6 are shown in the left dia-gram (a). Fat Ferrer's diagrams tend to be higher in the order and long, skinnydiagrams tend to be lower. The orresponding Fourier oe�ient matries foreah partition (at irreduible representations) are shown in the right diagram(b). Note that sine the Fourier basis funtions form a omplete basis for thespae of funtions on the Symmetri group, there must be exatly n! oe�ientsin total.ordering sine 3 ≤ 4, but 3 + 3 ≥ 4 + 1. The ordering over the partitions of

n = 6 is depited in Figure 3(a).Partitions with fat Ferrers diagrams tend to be greater (with respet to dom-inane ordering) than those with skinny Ferrers diagrams. Intuitively, represen-tations orresponding to partitions whih are high in the dominane orderingare `low frequeny', while representions orresponding to partitions whih arelow in the dominane ordering are `high frequeny'4.Having de�ned a family of intuitive permutation representations over theSymmetri group, we an now ask whether the permutation representations areirreduible or not: the answer in general, is to the negative, due to the fat that4The diretion of the ordering is slightly ounterintuitive given the frequeny interpretation,but is standard in the literature. 18



it is often possible to reonstrut lower order marginals by summing over theappropriate higher order marginal probabilities. However, it is possible to showthat, for eah permutation representation τλ, there exists a orresponding irre-duible representation ρλ, whih, loosely, aptures all of the information at the`frequeny' λ whih was not already aptured at lower frequeny irreduibles.Moreover, it an be shown that there exists no irreduible representation besidesthose indexed by the partitions of n. These remarkable results are formalizedin the James Submodule Theorem, whih we state here without proof (see (Di-aonis, 1988; James & Kerber, 1981; Sagan, 2001)).Theorem 12 (James' Submodule Theorem).1. (Uniqueness) For eah partition, λ, of n, there exists an irreduible rep-resentation, ρλ, whih is unique up to equivalene.2. (Completeness) Every irreduible representation of Sn orresponds to somepartition of n.3. There exists a matrix Cλ assoiated with eah partition λ, for whih
CT

λ · τλ(σ) · Cλ =
⊕

µDλ

Kλµ⊕

ℓ=1

ρµ(σ), for all σ ∈ Sn. (5.3)4. Kλλ = 1 for all partitions λ.In plain English, part (3) of the James Submodule theorem says that wean always reonstrut marginal probabilities of λ-tabloids using the Fourieroe�ients at irreduibles whih lie at λ and above in the dominane ordering, ifwe have knowledge of the matrix Cλ (whih an be preomputed using methodsdetailed in Appendix B), and the multipliities Kλµ. In partiular, ombiningEquation 5.3 with the de�nition of the Fourier transform, we have that
f̂τλ

= Cλ ·


⊕

µDλ

Kλµ⊕

ℓ=1

f̂ρµ


 · CT

λ , (5.4)and so to obtain marginal probabilities of λ-tabloids, we simply onstrut ablok diagonal matrix using the appropriate irreduible Fourier oe�ients, andonjugate by Cλ. The multipliities Kλµ are known as the Kostka numbers andan be omputed using Young's rule (Sagan, 2001). To illustrate using a fewexamples, we have the following deompositions:
τ(n) ≡ ρ(n),

τ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1),

τ(n−2,2) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2),

τ(n−2,1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1),

τ(n−3,3) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−3,3),

τ(n−3,2,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,2)

⊕ ρ(n−2,1,1) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1).19



Intuitively, the irreduibles at a partition λ re�et the �pure� λth-order e�etsof the underlying distribution. In other words, the irreduibles at λ form abasis for funtions that have �interesting� λth-order marginal probabilities, butuniform marginals at all partitions µ suh that µ ⊲ λ.Example 13. As an example, we demonstrate a �preferene� funtion whih is�purely� seond-order (unordered) in the sense that its Fourier oe�ients areequal to zero at all irreduible representations exept ρ(n−2,2) (and the trivialrepresentation). Consider the funtion f : Sn → R de�ned by:
f(σ) =

{
1 if |σ(1)− σ(2)| ≡ 1 (mod n)
0 otherwise .Intuitively, imagine seating n people at a round table with n hairs, but withthe onstraint that the �rst two people, Alie and Bob, are only happy if theyare allowed to sit next to eah other. In this ase, f an be thought of as theindiator funtion for the subset of seating arrangements (permutations) whihmake Alie and Bob happy.Sine f depends only on the destination of the unordered pair {1, 2}, itsFourier transform is zero at all partitions µ suh that µ ⊳ (n−2, 2) (f̂µ = 0). Onthe other hand, Alie and Bob have no individual preferenes for seating, so the�rst-order �marginals� of f are uniform, and hene, f̂(n−1,1) = 0. The Fourieroe�ients at irreduibles an be obtained from the seond-order (unordered)�marginals� using Equation 5.3.

CT
(n−2,2) · P̂τ(n−2,2)

· C(n−2,2) =




Z

0

f̂ρ(n−2,2)




.The sizes of the irreduible representation matries are typially muh smallerthan their orresponding permutation representation matries. In the ase of
λ = (1, . . . , 1) for example, dim τλ = n! while dim ρλ = 1. There is a sim-ple ombinatorial algorithm, known as the Hook Formula (Sagan, 2001), foromputing the dimension of ρλ. While we do not disuss it, we provide a fewdimensionality omputations here (Table 3) to failitate a diussion of omplex-ity later. See Figure 3(b) for an example of what the matries of a ompleteFourier transform on S6 would look like.In pratie, sine the irreduible representation matries are determined onlyup to equivalene, it is neessary to hoose a basis for the irreduible representa-tions in order to expliitly onstrut the representation matries. As in (Kondoret al., 2007), we use the Gel'fand-Tsetlin basis whih has several attrative prop-erties, two advantages being that the matries are real-valued and orthogonal.See Appendix A for details on onstruting irreduible matrix representationswith respet to the Gel'fand-Tsetlin basis.20



λ (n) (n − 1, 1) (n − 2, 2) (n − 2, 1, 1) (n − 3, 3) (n − 3, 2, 1)dim ρλ 1 n − 1 n(n−3)
2

(n−1)(n−2)
2

n(n−1)(n−5)
6

n(n−2)(n−4)
3Table 3: Dimensions of low-order irreduible representation matries.6 Inferene in the Fourier domainWhat we have shown thus far, is that there is a prinipled method for ompatlysummarizing distributions over permutations based on the idea of bandlimiting� saving only the low-frequeny terms of the Fourier transform of a funtion,whih, as we disussed, is equivalent to maintaining a set of low-order marginalprobabilities. We now turn to the problem of performing probabilisti infereneusing our ompat summaries. One of the main advantages of viewing marginalsas Fourier oe�ients is that it provides a natural priniple for formulatinginferene, whih is to rewrite all inferene related operations with respet to theFourier domain.The idea of bandlimiting a distribution is ultimately moot, however, if it be-omes neessary to transform bak to the primal domain eah time an infereneoperation is alled. Naively, the Fourier Transform on Sn sales as O((n!)2), andeven the fastest Fast Fourier Transforms for funtions on Sn are no faster than

O(n2 · n!) (see (Maslen, 1998) for example). To resolve this issue, we present aformulation of inferene whih operates solely in the Fourier domain, allowingus to avoid a ostly transform. We begin by disussing exat inferene in theFourier domain, whih is no more tratable than the original problem beausethere are n! Fourier oe�ients, but it will allow us to introdue the bandlim-iting approximation in the next setion. There are two operations to onsider:predition/rollup, and onditioning. The assumption for the rest of this se-tion is that the Fourier transforms of the transition and observation models areknown. We disuss methods for obtaining the models in Setion 8.6.1 Fourier predition/rollupWe will onsider one partiular lass of transition models � that of randomwalks over a group, whih assumes that σ(t+1) is generated from σ(t) by draw-ing a random permutation π(t) from some distribution Q(t) and setting σ(t+1) =
π(t)σ(t) 5. In our identity management example, π(t) represents a random iden-tity permutation that might our among traks when they get lose to eah5We plae π on the left side of the multipliation beause we want it to permute traksand not identities. Had we de�ned π to map from traks to identities (instead of identities totraks), then π would be multiplied from the right. Besides left versus right multipliation,there are no di�erenes between the two onventions.21



other (what we all a mixing event). For example, Q(1, 2) = 1/2 means thatTraks 1 and 2 swapped identities with probability 1/2. The random walkmodel also appears in many other appliations suh as modeling ard shu�es(Diaonis, 1988).The motivation behind the random walk transition model is that it allowsus to write the predition/rollup operation as a onvolution of distributions onthe Symmetri group. The extension of the familiar notion of onvolution togroups simple replaes additions and subtrations by analogous group operations(funtion omposition and inverse, respetively):De�nition 14. Let Q and P be probability distributions on Sn. De�ne theonvolution6 of Q and P to be the funtion [Q ∗ P ] (σ1) =
∑

σ2
Q(σ1σ

−1
2 )P (σ2).Using De�nition 14, we see that the predition/rollup step an be writtenas:

P (σ(t+1)) =
∑

σ(t)

P (σ(t+1)|σ(t)) · P (σ(t)),

=
∑

{(σ(t),π(t)) : σ(t+1)=π(t)·σ(t)}
Q(t)(π(t)) · P (σ(t)),(Right-multiplying both sides of σ(t+1) = π(t)σ(t)by (σ(t))−1, we see that π(t) an be replaed by σ(t+1)(σ(t))−1),

=
∑

σ(t)

Q(t)(σ(t+1) · (σ(t))−1) · P (σ(t)),

=
[
Q(t) ∗ P

]
(σ(t+1)).As with Fourier transforms on the real line, the Fourier oe�ients of the on-volution of distributions P and Q on groups an be obtained from the Fourieroe�ients of P and Q individually, using the onvolution theorem (see also(Diaonis, 1988)):Proposition 15 (Convolution Theorem). Let Q and P be probability distribu-tions on Sn. For any representation ρ,

[
Q̂ ∗ P

]
ρ

= Q̂ρ · P̂ρ,where the operation on the right side is matrix multipliation.Therefore, assuming that the Fourier transforms P̂ (t)
ρ and Q̂(t)

ρ are given, thepredition/rollup update rule is simply:
P̂ (t+1)

ρ ← Q̂(t)
ρ · P̂ (t)

ρ .6Note that this de�nition of onvolution on groups is stritly a generalization of onvolutionof funtions on the real line, and is a non-ommutative operation for non-abelian groups. Thusthe distribution P ∗ Q is not neessarily the same as Q ∗ P .22



σ P (0) Q(1) P (1) Q(2) P (2)

ǫ 1 3/4 3/4 3/4 9/16

(1, 2) 0 1/4 1/4 0 3/16

(2, 3) 0 0 0 0 0

(1, 3) 0 0 0 1/4 3/16

(1, 2, 3) 0 0 0 0 1/16

(1, 3, 2) 0 0 0 0 0Table 4: Primal domain predition/rollup example.
bP (0) bQ(1) bP (1) bQ(2) bP (2)

ρ(3) 1 1 1 1 1

ρ(2,1)

»
1 0
0 1

– »
1
2 0
0 1

– »
1
2 0
0 1

– "
1
2 −

√
3

8

−
√

3
8

5
8

# "
7
16 −

√
3

8

−
√

3
16

5
8

#

ρ(1,1,1) 1 1
2

1
2

1
2

1
2Table 5: Fourier domain predition/rollup example.Note that the update only requires knowledge of P̂ and does not require P .Furthermore, the update is pointwise in the Fourier domain in the sense thatthe oe�ients at the representation ρ a�et P̂ (t+1)

ρ only at ρ. Consequently,predition/rollup updates in the Fourier domain never inrease the representa-tional omplexity. For example, if we maintain third-order marginals, then asingle step of predition/rollup alled at time t returns the exat third-ordermarginals at time t+ 1, and nothing more.Example 16. We run the predition/rollup routines on the �rst two timesteps of the example in Figure 2, �rst in the primal domain, then in the Fourierdomain. At eah mixing event, two traks, i and j, swap identities with someprobability. Using a mixing model given by:
Q(π) =





3/4 if π = ǫ
1/4 if π = (i, j)
0 otherwise ,we obtain results shown in Tables 4 and 5.6.1.1 Limitations of random walk modelsWhile the random walk assumption aptures a rather general family of transitionmodels, there do exist ertain models whih annot be written as a random walkon a group. In partiular, one limitation is that the predition/rollup update fora random walk model an only inrease the entropy of the distribution. As with23



Kalman �lters, loalization is thus impossible without making observations. 7(Shin et al., 2005) show that the entropy must inrease for a ertain kind ofrandom walk on Sn (where π ould be either the identity or the transposition
(i, j)), but in fat, the result is easily generalized for any random walk mixingmodel and for any group.Proposition 17.

H
[
P (t+1)(σ(t+1))

]
≥ max

{
H
[
Q(t)(τ (t))

]
, H
[
P (t)(σ(t))

]}
,where H [P (σ)] denotes the statistial entropy funtional, H [P (σ)] = −∑σ∈G P (σ) logP (σ).Proof. We have:

P (t+1)(σ(t+1)) =
[
Q(t) ∗ P (t)

]
(σ(t+1))

=
∑

σ(t)

Q(σ(t+1) · (σ(t))−1)P (t)(σ(t))Applying the Jensen Inequality to the entropy funtion (whih is onave) yields:
H
[
P (t+1)(σ(t+1))

]
≥
∑

σ(t)

P (t)(σ(t))H
[
Q(t)(σ · (σ(t))−1)

]
, (Jensen's inequality)

=
∑

σ(t)

P (t)(σ(t))H
[
Q(t)(σ)

]
, (translation invariane of entropy)

= H
[
Q(t)(σ)

]
, (sine ∑σ(t) P (t)(σ(t)) = 1).The proof that H [P (t+1)(σ(t+1))
]
≥ H

[
P (t)(σ(t))

] is similar with the exeptionthat we must rewrite the onvolution so that the sum ranges over τ (t).
P (t+1)(σ(t+1)) =

[
Q(t) ∗ P (t)

]
(σ(t+1)),

=
∑

τ (t)

Q(t)(τ (t))P (t)((τ (t))−1 · σ(t+1)).Example 18. This example is based on one from (Diaonis, 1988). Considera dek of ards numbered {1, . . . , n}. Choose a random permutation of ards by7In general, if we are not onstrained to using linear Gaussian models, it is possible toloalize with no observations. Consider a robot walking along the unit interval on the real line(whih is not a group). If the position of the robot is unknown, one easy loalization strategymight be to simply drive the robot to the right, with the knowledge that given ample time,the robot will slam into the `wall', at whih point it will have been loalized. With randomwalk based models on groups however, these strategies are impossible � imagine the samerobot walking around the unit irle � sine, in some sense, the group struture prevents theexistene of `walls'. 24
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Figure 4: We start with a dek of ards in sorted order, and perform �fteenonseutive shu�es aording to the rule given in Equation 6.1. The plot showsthe entropy of the distribution over permutations with respet to the numberof shu�es for n = 3, 4, . . . , 8. When H(P )/ log(n!) = 1, the distribution hasbeome uniform.�rst piking two ards independently, and swapping (a ard might be swappedwith itself), yielding the following probability distribution over Sn:
Q(π) =





1
n if π =id
2

n2 if π is a transposition
0 otherwise . (6.1)Repeating the above proess for generating random permutations π gives atransition model for a hidden Markov model over the symmetri group. We analso see (Figure 4) that the entropy of the dek inreases monotonially witheah shu�e, and that repeated shu�es with Q(π) eventually bring the dek tothe uniform distribution.6.2 Fourier onditioningIn ontrast with the predition/rollup operation, onditioning an potentiallyinrease the representational omplexity. As an example, suppose that we knowthe following �rst-order marginal probabilities:

P (Alie is at Trak 1 or Trak 2) = .9, and
P (Bob is at Trak 1 or Trak 2) = .9.If we then make the following �rst-order observation:
P (Cathy is at Trak 1 or Trak 2) = 1,25



then it an be inferred that Alie and Bob annot both oupy Traks 1 and 2at the same time, i.e.,
P ({Alie,Bob} oupy Traks {1,2}) = 0,demonstrating that after onditioning, we are left with knowledge of seond-order (unordered) marginals despite the fat that the prior and likelihood fun-tions were only known up to �rst-order. Intuitively, the example shows thatonditioning �smears� information from low-order Fourier oe�ients to high-order oe�ients, and that one annot hope for a pointwise operation as wasa�orded by predition/rollup. We now show preisely how irreduibles of dif-ferent omplexities �interat� with eah other in the Fourier domain duringonditioning.An appliation of Bayes rule to �nd a posterior distribution P (σ|z) afterobserving some evidene z requires two steps: a pointwise produt of likelihood

P (z|σ) and prior P (σ), followed by a normalization step:
P (σ|z) = η · P (z|σ) · P (σ).For notational onveniene, we will refer to the likelihood funtion as L(z|σ)heneforth. We showed earlier that the normalization onstant η−1 =

∑
σ L(z|σ)·

P (σ) is given by the Fourier transform of L̂(t)P (t) at the trivial representation� and therefore the normalization step of onditioning an be implemented bysimply dividing eah Fourier oe�ient by the salar [L̂(t)P (t)
]

ρ(n)

.The pointwise produt of two funtions f and g, however, is trikier toformulate in the Fourier domain. For funtions on the real line, the pointwiseprodut of funtions an be implemented by onvolving the Fourier oe�ientsof f̂ and ĝ, and so a natural question is: an we apply a similar operation forfuntions over general groups? Our answer to this is that there is an analogous(but more ompliated) notion of onvolution in the Fourier domain of a general�nite group. We present a onvolution-based onditioning algorithm whih weall Kroneker Conditioning, whih, in ontrast to the pointwise nature of theFourier Domain predition/rollup step, and muh like onvolution, smears theinformation at an irreduible ρν to other irreduibles.6.2.1 Fourier transform of the pointwise produtOur approah to omputing the Fourier transform of the pointwise produt interms of f̂ and ĝ is to manipulate the funtion f(σ)g(σ) so that it an be seenas the result of an inverse Fourier transform (Equation 4.4). Hene, the goalwill be to �nd matries Rν (as a funtion of f̂ , ĝ) suh that for any σ ∈ G,
f(σ) · g(σ) =

1

|G|
∑

ν

dρν
Tr (RT

ν · ρν(σ)
)
, (6.2)after whih we will be able to read o� the Fourier transform of the pointwiseprodut as [f̂ g]

ρν

= Rν . 26



1. If A and B are square, Tr (A⊗B) = (TrA) · (TrB).2. (A⊗B) · (C ⊗D) = AC ⊗BD.3. Let A be an n×n matrix, and C an invertible n×n matrix. ThenTrA = Tr (C−1AC
).4. Let A be an n×n matrix and Bi be matries of size mi×mi where∑

i mi = n. Then Tr (A · (⊕i Bi)) =
∑

i Tr (Ai ·Bi), where Ai isthe blok of A orresponding to blok Bi in the matrix (
⊕

iBi).Table 6: Matrix Identities used in Proposition 19.For any σ ∈ G we an write the pointwise produt in terms f̂ and ĝ usingthe inverse Fourier transform:
f(σ) · g(σ) =

[
1

|G|
∑

λ

dρλ
Tr(f̂T

ρλ
· ρλ(σ)

)]
·
[

1

|G|
∑

µ

dρµ
Tr(ĝT

ρµ
· ρµ(σ)

)]

=

(
1

|G|

)2∑

λ,µ

dρλ
dρµ

[Tr(f̂T
ρλ
· ρλ(σ)

)
· Tr(ĝT

ρµ
· ρµ(σ)

)]
. (6.3)Now we want to manipulate this produt of traes in the last line to be just onetrae (as in Equation 6.2), by appealing to some properties of the KronekerProdut. The Kroneker produt of an n × n matrix U = (ui,j) by an m ×mmatrix V , is de�ned to be the nm× nm matrix

U ⊗ V =




u1,1V u1,2V . . . u1,nV
u2,1V u2,2V . . . u2,nV... ... . . . ...
un,1V un,2V . . . un,nV


 .We summarize some important matrix properties in Table 6. The onnetionto our problem is given by matrix property 1. Applying this to Equation 6.3,we have:Tr(f̂T

ρλ
· ρλ(σ)

)
· Tr(ĝT

ρµ
· ρµ(σ)

)
= Tr((f̂T

ρλ
· ρλ(σ)

)
⊗
(
ĝT

ρµ
· ρµ(σ)

))

= Tr((f̂ρλ
⊗ ĝρµ

)T

· (ρλ(σ)⊗ ρµ(σ))

)
,where the last line follows by Property 2. The term on the left, f̂ρλ

⊗ ĝρµ
, is amatrix of oe�ients. The term on the right, ρλ(σ) ⊗ ρµ(σ), itself happens tobe a representation, alled the Kroneker (or Tensor) Produt Representation.In general, the Kroneker produt representation is reduible, and so it andeomposed into a diret sum of irreduibles. In partiular, if ρλ and ρµ are27



any two irreduibles of G, there exists a similarity transform Cλµ suh that, forany σ ∈ G,
C−1

λµ · [ρλ ⊗ ρµ] (σ) · Cλµ =
⊕

ν

zλµν⊕

ℓ=1

ρν(σ). (6.4)The ⊕ symbols here refer to a matrix diret sum as in Equation 2, ν indexesover all irreduible representations of Sn, while ℓ indexes over a number of opiesof ρν whih appear in the deomposition. We index bloks on the right side ofthis equation by pairs of indies (ν, ℓ). The number of opies of eah ρν (for thetensor produt pair ρλ ⊗ ρµ) is denoted by the integer zλµν , the olletion ofwhih, taken over all triples (λ, µ, ν), are ommonly referred to as the Clebsh-Gordan series. Note that we allow the zλµν to be zero, in whih ase ρν doesnot ontribute to the diret sum. The matries Cλµ are known as the Clebsh-Gordan oe�ients. The Kroneker Produt Deomposition problem is that of�nding the irreduible omponents of the Kroneker produt representation, andthus to �nd the Clebsh-Gordan series/oe�ients for eah pair of irreduiblerepresentations (ρλ, ρµ).Deomposing the Kroneker produt inside Equation 6.4 using the Clebsh-Gordan series and oe�ients yields the desired Fourier transform, whih wesummarize in the form of a proposition. In the ase that f and g are de�nedover an abelian group, then the following formulas redue to the familiar formof onvolution.Proposition 19. Let f̂ , ĝ be the Fourier transforms of funtions f and g re-spetively, and for eah ordered pair of irreduibles (ρλ, ρµ), de�ne: Aλµ ,

C−1
λµ ·

(
f̂ρλ
⊗ ĝρµ

)
·Cλµ. Then the Fourier tranform of the pointwise produt fgis: [

f̂ g
]

ρν

=
1

dρν
|G|

∑

λµ

dρλ
dρµ

zλµν∑

ℓ=1

A
(ν,ℓ)
λµ , (6.5)where A(ν,ℓ)

λµ is the blok of Aλµ orresponding to the (ν, ℓ) blok in⊕ν

⊕zλµν

ℓ=1 ρνfrom Equation 6.4.Proof. We use the fat that Cλµ is an orthogonal matrix for all pairs (ρλ, ρµ),i.e., CT
λµ · Cλµ = I.

f(σ) · g(σ) =

"

1

|G|
X

λ

dρλ
Tr“f̂T

ρλ
· ρλ(σ)

”

#

·

2

4

1

|G|
X

µ

dρµTr “ĝT
ρµ

· ρµ(σ)
”

3

5

=

„

1

|G|

«2
X

λ,µ

dρλ
dρµ

hTr“f̂T
ρλ

· ρµ(σ)
”

· Tr“ĝT
ρµ

· ρµ(σ)
”i(by Property 1) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµ

hTr““f̂T
ρλ

· ρλ(σ)
”

⊗
“

ĝT
ρµ

· ρµ(σ)
””i(by Property 2) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµTr„“f̂ρλ

⊗ ĝρµ

”T
· (ρλ(σ) ⊗ ρµ(σ))

«
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(by Property 3) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµTr„CT

λµ ·
“

f̂ρλ
⊗ ĝρµ

”T
· Cλµ

·CT
λµ · (ρλ(σ) ⊗ ρµ(σ)) · Cλµ

”(by de�nition of Cλµ and Aλµ) =

„

1

|G|

«2
X

λ,µ

dρλ
dρµTr AT

λµ ·
 

M

ν

zλµν
M

ℓ=1

ρν(σ)

!!(by Property 4) =
1

|G|2
X

λµ

dρλ
dρµ

X

ν

dρν

zλµν
X

ℓ=1

Tr„“d−1
ρν

A
(ν,ℓ)
λµ

”T
ρν(σ)

«(rearranging terms) =
1

|G|
X

ν

dρνTr2640@X
λµ

zλµν
X

ℓ=1

dρλ
dρµ

dρν |G|
A

(ν,ℓ)
λµ

1

A

T

ρν(σ)

3

7

5
.Reognizing the last expression as an inverse Fourier transform ompletes theproof.The Clebsh-Gordan series, zλµν , plays an important role in Equation 6.5,whih says that the (ρλ, ρµ) rossterm ontributes to the pointwise produt at

ρν only when zλµν > 0. In the simplest ase, we have that
z(n),µ,ν =

{
1 if µ = ν
0 otherwise ,whih is true sine ρ(n)(σ) = 1 for all σ ∈ Sn. As another example, it is knownthat:

ρ(n−1,1) ⊗ ρ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1), (6.6)or equivalently,
z(n−1,1),(n−1,1),ν =

{
1 if ν is one of (n),(n− 1, 1),(n− 2, 2), or (n− 2, 1, 1)
0 otherwise .So if the Fourier transforms of the likelihood and prior are zero past the �rsttwo irreduibles ((n) and (n− 1, 1)), then a single onditioning step results in aFourier transform whih, in general, arries seond-order information at (n−2, 2)and (n−2, 1, 1), but is guaranteed to be zero past the �rst four irreduibles (n),

(n− 1, 1), (n− 2, 2) and (n− 2, 1, 1).As far as we know, there are no analytial formulas for �nding the entireClebsh-Gordan series or oe�ients, and in pratie, these omputations do infat take a long time. We emphasize however, that as fundamental onstantsrelated to the irreduibles of the Symmetri group, they need only be omputedone (like the digits of π, for example) and an be stored in a table for allfuture referene. For a detailed disussion of tehniques for omputing theClebsh-Gordan series/oe�ients, see Appendix B. We plan to make a setof preomputed oe�ients available on the web, but for now we will assumethroughout the rest of the paper that both the series and oe�ients have beenmade available as a lookup table. We onlude our setion on inferene with afully worked example of Kroneker onditioning.29



Example 20. For this example, refer to Table 2 for the representations of S3.Given funtions f, g : S3 → R, we will ompute the Fourier transform of thepointwise produt f · g.Sine there are three irreduibles, there are nine tensor produts ρλ ⊗ ρµto deompose, six of whih are trivial either beause they are one-dimensional,or involve tensoring against the trivial representation. The nontrivial tensorproduts to onsider are ρ(2,1) ⊗ ρ(1,1,1), ρ(1,1,1) ⊗ ρ(2,1) and ρ(2,1) ⊗ ρ(2,1). TheClebsh-Gordan series for the nontrivial tensor produts are:
z(2,1),(1,1,1),ν z(1,1,1),(2,1),ν z(2,1),(2,1),ν

ν = (3) 0 0 1
ν = (2, 1) 1 1 1

ν = (1, 1, 1) 0 0 1The Clebsh-Gordan oe�ients for the nontrivial tensor produts are givenby the following orthogonal matries:
C(2,1)⊗(1,1,1) =

»

0 1
−1 0

–

, C(1,1,1)⊗(2,1) =

»

0 −1
1 0

–

,

C(2,1)⊗(2,1) =

√
2

2

2

6

6

4

1 0 −1 0
0 −1 0 1
0 −1 0 −1
1 0 1 0

3

7

7

5

.As in Proposition 19, de�ne:
A(2,1)⊗(1,1,1) = CT

(2,1)⊗(1,1,1)

(
f̂(2,1) ⊗ ĝ(1,1,1)

)
C(2,1)⊗(1,1,1), (6.7)

A(1,1,1)⊗(2,1) = CT
(1,1,1)⊗(2,1)

(
f̂(1,1,1) ⊗ ĝ(2,1)

)
C(1,1,1)⊗(2,1), (6.8)

A(2,1)⊗(2,1) = CT
(2,1)⊗(2,1)

(
f̂(2,1) ⊗ ĝ(2,1)

)
C(2,1)⊗(2,1), (6.9)Then Proposition 19 gives the following formulas:

f̂ · gρ(3)
=

1

3!
·
[
f̂ρ(3)

· ĝρ(3)
+ f̂ρ(1,1,1)

· ĝρ(1,1,1)
+ 4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
, (6.10)

f̂ · gρ(2,1)
=

1

3!
·
[
f̂ρ(2,1)

· ĝρ(3)
+ f̂ρ(3)

· ĝρ(2,1)
+A(1,1,1)⊗(2,1)

+A(2,1)⊗(1,1,1) + 2 ·
[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (6.11)

f̂ · gρ(1,1,1)
=

1

3!
·
[
f̂ρ(3)

· ĝρ(1,1,1)
+ f̂ρ(1,1,1)

· ĝρ(3)
+ 4 ·

[
A(2,1)⊗(2,1)

]
4,4

]
, (6.12)where the notation [A]a:b,c:d denotes the blok of entries in A between rows aand b, and between olumns c and d (inlusive).Using the above formulas, we an ontinue on Example 16 and ompute thelast update step in our identity management problem (Figure 2). At the �naltime step, we observe that Bob is at trak 1 with 100% ertainty. Our likelihoodfuntion is therefore nonzero only for the permutations whih map Bob (theseond identity) to the �rst trak:

L(σ) ∝
{

1 if σ = (1, 2) or (1, 3, 2)
0 otherwise .30



Algorithm 1: Pseudoode for the Fourier Predition/Rollup Algorithm.PreditionRollupinput : Q̂(t)
ρλ

and P̂ (t)
ρλ
, ρλ ∈ Λoutput: P̂ (t+1)

ρλ
, ρλ ∈ Λforeah ρλ ∈ Λ do P̂

(t+1)
ρλ

← Q̂
(t)
ρλ
· P̂ (t)

ρλ
;1The Fourier transform of the likelihood funtion is:

L̂ρ(3)
= 2, L̂ρ(2,1)

=

[
−3/2

√
3/2

−
√

3/2 1/2

]
, L̂ρ(1,1,1)

= 0. (6.13)Plugging the Fourier transforms of the prior distribution (P̂ (2) from Table 5)and likelihood (Equation 6.13) into Equations 6.7, 6.8, 6.9, we have:
A(2,1)⊗(1,1,1) =

»
0 0
0 0

–
, A(1,1,1)⊗(2,1) =

1

8

»
1

√
3

−
√

3 −3

–
,

A(2,1)⊗(2,1) =
1

32

2
664

−7 −
√

3 11 5
√

3

−2
√

3 −10 −6
√

3 −14

20 22
√

3 −4 4
√

3

−11
√

3 −23 −
√

3 −13

3
775To invoke Bayes rule in the Fourier domain, we perform a pointwise prod-ut using Equations 6.10, 6.11, 6.12, and normalize by dividing by the trivialoe�ient, whih yields the Fourier transform of the posterior distribution as:

[
P̂ (σ|z)

]
ρ(3)

= 1,
[
P̂ (σ|z)

]
ρ(2,1)

=

[
−1 0
0 1

]
,
[
P̂ (σ|z)

]
ρ(1,1,1)

= −1.(6.14)Finally, we an see that the result is orret by reognizing that the Fouriertransform of the posterior (Equation 6.14) orresponds exatly to the distributionwhih is 1 at σ = (1, 2) and 0 everywhere else. Bob is therefore at Trak 1, Alieat Trak 2 and Cathy at Trak 3.
σ ǫ (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

P (σ) 0 1 0 0 0 07 Approximate inferene by bandlimitingWe now onsider the onsequenes of performing inferene using the Fouriertransform at a redued set of oe�ients. Important issues inlude understand-ing how error an be introdued into the system, and when our algorithms areexpeted to perform well as an approximation. Spei�ally, we �x a bandlimit
λMIN and maintain the Fourier transform of P only at irreduibles whih areat λMIN or above in the dominane ordering:

Λ = {ρλ : λD λMIN}.31



Algorithm 2: Pseudoode for the Kroneker Conditioning Algorithm.KronekerConditioninginput : Fourier oe�ients of the likelihood funtion, L̂ρλ
, ρλ ∈ ΛL, andFourier oe�ients of the prior distribution, P̂ρµ
, ρµ ∈ ΛPoutput: Fourier oe�ients of the posterior distribution, L̂P ρν

, ρν ∈ ΛPforeah ρν ∈ ΛP do L̂P ρν
← 0 //Initialize Posterior1 //Pointwise Produtforeah ρλ ∈ ΛL do2 foreah ρµ ∈ ΛP do3

z ← CGseries(ρλ, ρµ) ;4
Cλµ ← CGcoefficients(ρλ, ρµ) ; Aλµ ← CT

λµ ·
(
L̂ρλ
⊗ P̂ρµ

)
· Cλµ ;5 for ρν ∈ ΛP suh that zλµν 6= 0 do6 for ℓ = 1 to zλµν do7 [

L̂(t)P (t)
]

ρν

←
[
L̂(t)P (t)

]
ρν

+
dρλ

dρµ

dρν n! A
(ν,ℓ)
λµ ; //A(ν,ℓ)

λµ is the8
(ν, ℓ) blok of Aλµ

η ←
[
L̂(t)P (t)

]−1

ρ(n)

;9 foreah ρν ∈ Λ do [
L̂(t)P (t)

]
ρν

← η
[
L̂(t)P (t)

]
ρν

//Normalization10For example, when λMIN = (n−2, 1, 1), Λ is the set {ρ(n), ρ(n−1,1), ρ(n−2,2) , and
ρ(n−2,1,1)

}, whih orresponds to maintaining seond-order (ordered) marginalprobabilities of the form P (σ((i, j)) = (k, ℓ)). During inferene, we follow theproedure outlined in the previous setion but disard the higher order termswhih an be introdued during the onditioning step. Pseudoode for ban-dlimited predition/rollup and Kroneker onditioning is given in Algorithms 1and 2. We note that it is not neessary to maintain the same number of irre-duibles for both prior and likelihood during the onditioning step. The �rstquestion to ask is: when should one expet a bandlimited approximation to belose to P (σ) as a funtion? Qualitatively, if a distribution is relatively smooth,then most of its energy is stored in the low-order Fourier oe�ients. However,in a phenomenon quite reminisent of the Heisenberg unertainty priniple fromquantum mehanis, it is exatly when the distribution is sharply onentratedat a small subset of permutations, that the Fourier projetion is unable tofaithfully approximate the distribution. We illustrate this unertainty e�etin Figure 5 by plotting the auray of a bandlimited distribution against theentropy of a distribution.Even though the bandlimited distribution is sometimes a poor approximationto the true distribution, the marginals mainatined by our algorithm are oftensu�iently aurate. And so instead of onsidering the approximation aurayof the bandlimited Fourier transform to the true joint distribution, we onsiderthe auray only at the marginals whih are maintained by our method.32
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Figure 5: In general, smoother distributions are well approximated by low-order Fourier projetions. In this graph, we show the approximation quality ofthe Fourier projetions on distributions with di�erent entropies, starting fromsharply peaked delta distributions on the left side of the graph, whih get itera-tively smoothed until they beomes the maximum entropy uniform distributionon the right side. On the y-axis, we measure how muh energy is preserved inthe bandlimited approximation, whih we de�ne to be |P ′|2
|P |2 , where P ′ is the ban-dlimited approximation to P . Eah line represents the approximation qualityusing a �xed number of Fourier oe�ients. At one extreme, we ahieve perfetsignal reonstrution by using all Fourier oe�ients, and at the other, we per-form poorly on �spiky� distributions, but well on high-entropy distributions, bystoring a single Fourier oe�ient.7.1 Soures of error during infereneWe now analyze the errors inurred during our inferene proedures with respetto the auray at maintained marginals. It is immediate that the Fourierdomain predition/rollup operation is exat due to its pointwise nature in theFourier domain. For example, if we have the seond order marginals at time

t = 0, then we an �nd the exat seond order marginals at all t > 0 if we onlyperform predition/rollup operations. Instead, the errors in inferene are onlyommitted by Kroneker onditioning, where they are impliitly introdued atoe�ients outside of Λ (by e�etively setting the oe�ients of the prior andlikelihood at irreduibles outside of Λ to be zero), then propagated inside to theirreduibles of Λ.In pratie, we observe that the errors introdued at the low-order irre-33



(a) n = 5 (b) n = 6Figure 6: We show the dominane ordering for partitions of n = 5 and n =
6 again. By setting λMIN = (3, 1, 1) and (4, 1, 1) respetively, we keep theirreduibles orresponding to the partitions in the dotted regions. If we allKroneker Conditioning with a �rst-order observation model, then aordingto Theorem 21, we an expet to inur some error at the Fourier oe�ientsorresponding to (3, 1, 1) and (3, 2) for n = 5, and (4, 1, 1) and (4, 2) for n = 6(shown as shaded tableaux), but to be exat at �rst-order oe�ients.duibles during inferene are small if the prior and likelihood are su�ientlydi�use, whih makes sense sine the high-frequeny Fourier oe�ients are smallin suh ases. We an sometimes show that the update is exat at low orderirreduibles if we maintain enough oe�ients.Theorem 21. If λMIN = (n−p, λ2, . . . ), and the Kroneker onditioning algo-rithm is alled with a likelihood funtion whose Fourier oe�ients are nonzeroonly at ρµ when µ D (n − q, µ2, . . . ), then the approximate Fourier oe�ientsof the posterior distribution are exat at the set of irreduibles:

ΛEXACT = {ρλ : λD (n− |p− q|, . . . )}.Proof. See Appendix B.For example, if we all Kroneker onditioning by passing in third-orderterms of the prior and �rst-order terms of the likelihood, then all �rst and34



seond-order (unordered and ordered) marginal probabilities of the posteriordistribution an be reonstruted without error.7.2 Projeting to the marginal polytopeDespite the enouraging result of Theorem 21, the fat remains that onse-utive onditioning steps an propagate errors to all levels of the bandlimitedFourier transform, and in many irumstanes, results in a Fourier transformwhose �marginal probabilities� orrespond to no onsistent joint distributionover permutations, and are sometimes negative. To ombat this problem, wepresent a method for projeting to the spae of oe�ients orresponding toonsistent joint distributions (whih we will refer to as the marginal polytope)during inferene.We begin by disussing the �rst-order version of the marginal polytope pro-jetion problem. Given an n×n matrix,M , of real numbers, how an we deidewhether there exists some probability distribution whih has M as its matrixof �rst-order marginal probabilities? A neessary and su�ient ondition, as itturns out, is for M to be doubly stohasti. That is, all entries of M must benonnegative and all rows and olumns of M must sum to one (the probabilitythat Alie is at some trak is 1, and the probability that some identity is atTrak 3 is 1). The double stohastiity ondition omes from the Birkho�-vonNeumann theorem (van Lint & Wilson, 2001) whih states that a matrix isdoubly stohasti if and only if it an be written as a onvex ombination ofpermutation matries.To �renormalize� �rst-order marginals to be doubly stohasti, some authors(Shin et al., 2003; Shin et al., 2005; Balakrishnan et al., 2004; Helmbold & War-muth, 2007) have used the Sinkhorn iteration, whih alternates between nor-malizing rows and olumns independently until onvergene is obtained. Con-vergene is guaranteed under mild onditions and it an be shown that the limitis a nonnegative doubly stohasti matrix whih is losest to the original matrixin the sense that the Kullbak-Leibler divergene is minimized (Balakrishnanet al., 2004).There are several problems whih ause the Sinkhorn iteration to be an un-natural solution in our setting. First, sine the Sinkhorn iteration only worksfor nonnegative matries, we would have to �rst ap entries to lie in the appro-priate range, [0, 1]. More seriously, even though the Sinkhorn iteration wouldguarantee a doubly stohasti higher order matrix of marginals, there are severalnatural onstraints whih are violated when running the Sinkhorn iteration onhigher-order marginals. For example, with seond-order (ordered) marginals, itseems that we should at least enfore the following symmetry onstraint:
P (σ : σ(k, ℓ) = (i, j)) = P (σ : σ(ℓ, k) = (j, i)),whih says, for example, that the marginal probability that Alie is in Trak 1and Bob is in Trak 2 is the same as the marginal probability that Bob is inTrak 2 and Alie is in Trak 1. Another natural onstraint that an be broken35



is what we refer to as low-order marginal onsisteny. For example, it shouldalways be the ase that:
P (j) =

∑

i

P (i, j) =
∑

k

P (j, k).It should be noted that the doubly stohasti requirement is a speial ase oflower-order marginal onsisteny � we require that higher-order marginals beonsistent on the 0th order marginal.While ompatly desribing the onstraints of the marginal polytope exatlyremains an open problem, we propose a method for projeting onto a relaxedform of the marginal polytope whih addresses both symmetry and low-orderonsisteny problems by operating diretly on irreduible Fourier oe�ientsinstead of on the matrix of marginal probabilities. After eah onditioning step,we apply a `orretion' to the approximate posterior P (t) by �nding the ban-dlimited funtion in the relaxed marginal polytope whih is losest to P (t) in an
L2 sense. To perform the projetion, we employ the Planherel Theorem (Dia-onis, 1988) whih relates the L2 distane between funtions on Sn to a distanemetri in the Fourier domain.Proposition 22 (Planherel Theorem).

∑

σ

(f(σ)− g(σ))2 =
1

|G|
∑

ν

dρν
Tr((f̂ρν

− ĝρν

)T

·
(
f̂ρν
− ĝρν

))
.(7.1)To �nd the losest bandlimited funtion in the relaxed marginal polytope,we formulate a quadrati program whose objetive is to minimize the rightside of Equation 7.1, and whose sum is taken only over the set of maintainedirreduibles, Λ, subjet to the set of onstraints whih require all marginal prob-abilities to be nonnegative. We thus refer to our orretion step as PlanherelProjetion. Our quadrati program an be written as:minimizef̂proj

∑

λ∈Λ

dλTr [(f̂ − f̂proj
)T

ρλ

(
f̂ − f̂proj

)
ρλ

]subjet to: [
f̂proj

]
(n)

= 1,


CλMIN ·


 ⊕

µDλMIN

K
λMIN ,µ⊕

ℓ=1

f̂proj
ρµ


 · CT

λMIN




ij

≥ 0, for all (i, j),where KλMIN and CλMIN are the preomputed onstants from Equation 5.4.We remark that even though the projetion will produe a Fourier transformorresponding to nonnegative marginals whih are onsistent with eah other,there might not neessarily exist a joint probability distribution on Sn onsistentwith those marginals exept in the speial ase of �rst-order marginals.36



Example 23. In Example 20, we ran the Kroneker onditioning algorithm us-ing all of the Fourier oe�ients. If only the �rst-order oe�ients are available,however, then the expressions for zeroth and �rst order terms of the posterior(Equations 6.10,6.11) beome:
f̂ · gρ(3)

=
1

3!
·
[
f̂ρ(3)

· ĝρ(3)
+ 4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
, (7.2)

f̂ · gρ(2,1)
=

1

3!
·
[
f̂ρ(2,1)

· ĝρ(3)
+ f̂ρ(3)

· ĝρ(2,1)
+ 2 ·

[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (7.3)Plugging in the same numerial values from Example 20 and normalizing ap-propriately yields the approximate Fourier oe�ients of the posterior:

[
P̂ (σ|z)

]
ρ(3)

= 1
[
P̂ (σ|z)

]
ρ(2,1)

=

[
−10/9 −77/400
77/400 4/3

]
,whih orrespond to the following �rst-order marginal probabilities:

P̂τ(2,1)




A B CTrak 1 0 11/9 −2/9Trak 2 1 0 0Trak 3 0 −2/9 11/9


 .In partiular, we see that the approximate matrix of `marginals' ontains nega-tive numbers. Applying the Planherel projetion step, we obtain the followingmarginals:

P̂τ(2,1)




A B CTrak 1 0 1 0Trak 2 1 0 0Trak 3 0 0 1


 ,whih happen to be exatly the true posterior marginals. It should be notedhowever, that rounding the `marginals' to be in the appropriate range wouldhave worked in this partiular example as well.8 Probabilisti models of mixing and observa-tionsWhile the algorithms presented in the previous setions are general in the sensethat they work on all mixing and observation models, it is not always obvioushow to ompute the Fourier transform of a given model. In this setion, wepresent ways to obtain suh transforms for a few useful models.8.1 Mixing modelsThe simplest mixing model for identity management assumes that with proba-bility p, nothing happens, and that with probability (1 − p), the identities for37



traks i and j are swapped. The probability distribution is therefore:
Qij(π) =





p if π = ǫ
1− p if π = (i, j)

0 otherwise.Sine Qij is suh a sparse distribution (in the sense that Q(π) = 0 for most π),it is possible to diretly ompute Q̂ using De�nition 6:
Q̂ρλ

= pI + (1− p)ρλ((i, j)),where I refers to the dλ × dλ identity matrix, and ρλ((i, j)) is the irreduiblerepresentation matrix ρλ evaluated at the transposition (i, j) (whih an beomputed using the algorithms from Appendix A).8.2 Observation modelsThe simplest model assumes that we an get observations of the form: `trak ℓis olor k' (whih is essentially the model onsidered by (Kondor et al., 2007)).The probability of seeing olor k at trak ℓ given data assoiation σ is
L(σ) = P (zℓ = k|σ) = ασ(ℓ),k, (8.1)where ∑k ασ(ℓ)k = 1. For eah identity, the likelihood L(σ) = P (zℓ = k|σ)depends on a histogram over all possible olors. If the number of possibleolors is K, then the likelihood model an be spei�ed by an n×K matrix ofprobabilities. For example,

ασ(ℓ),k =




k = Red k = Orange k = Yellow k = Green
σ(ℓ) = Alie 1/2 1/4 1/4 0
σ(ℓ) = Bob 1/4 0 0 3/4
σ(ℓ) = Cathy 0 1/2 1/2 0


 .(8.2)Sine the observation model only depends on a single identity, the �rst-order terms of the Fourier transform su�e to fully desribe the likelihood.To ompute the �rst-order Fourier oe�ients, at irreduibles, we proeed byomputing the �rst-order Fourier oe�ients at the �rst-order permutation rep-resentation, then transforming to irreduible oe�ients. The Fourier transformof the likelihood at the �rst-order permutation representation is given by:

[
L̂τ(n−1,1)

]
ij

=
∑

{σ:σ(j)=i}
P (zℓ = k|σ) =

∑

{σ:σ(j)=i}
ασ(ℓ)k.To ompute the ij-term, there are two ases to onsider.1. If j = ℓ (that is, if Trak j is the same as the trak that was observed),then the oe�ient L̂ij is proportional to the probability that Identity iis olor k.

L̂ij =
∑

{σ:σ(ℓ)=i}
αi,k = (n− 1)! · αi,k. (8.3)38



2. If, on the other hand, j 6= ℓ (Trak j is not the observed trak)), then theoe�ient L̂ij is proportional to the sum over
L̂ij =

∑

{σ:σ(j)=i}
ασ(ℓ),k (8.4)

=
∑

m 6=i

∑

{σ:σ(j)=i and σ(l)=m}

ασ(ℓ),k (8.5)
=
∑

m 6=i

(n− 2)! · αm,k. (8.6)Example 24. We will ompute the �rst-order marginals of the likelihood fun-tion on S3 whih arises from observing a "Red blob at Trak 1". Plugging thevalues from the �Red� olumn of the α matrix (Equation 8.2) into Equation 8.3and 8.6 yields the following matrix of �rst-order oe�ients (at the τ(n−1,1)permutation representation):
[
L̂(n−1,1)

]
ij

=




Trak 1 Trak 2 Trak 3Alie 1/4 1/4 1Bob 1/2 1/2 1/2Cathy 3/4 3/4 0


The orresponding oe�ients at the irreduible representations are:

L̂(3) = 1.5, L̂(2,1) =

[
0 −

√
3/4

0 −3/4

]
, L̂(1,1,1) = 0.9 Related workRankings and permutations have reently beome an ative area of researh inmahine learning due to their importane in information retrieval and prefereneeliitation. Rather than onsidering full distributions over permutations, manyapproahes, like RankSVM (Joahims, 2002) and RankBoost (Freund et al.,2003), have instead foused on learning a single `optimal' ranking with respetto some objetive funtion.There are also several authors who have studied distributions over permu-tations/rankings (Mallows, 1957; Crithlow, 1985; Fligner & Verdui, 1986;Taylor et al., 2008; Lebanon & Mao, 2008). (Taylor et al., 2008) onsider dis-tributions over Sn whih are indued by the rankings of n independent drawsfrom n individually entered Gaussian distributions with equal variane. Theyompatly summarize their distributions using an O(n2) matrix whih is on-eptually similar to our �rst-order summaries and apply their tehniques toranking web douments. Most other previous approahes at diretly modelingdistributions on Sn, however, have relied on distane based models. For ex-ample, the Mallows model (Mallows, 1957) de�nes a Gaussian-like distributionover permutations as:

P (σ; c, σ0) ∝ exp (−cd(σ, σ0)) , (9.1)39



where the funtion d(σ, σ0) is the Kendall's tau distane whih ounts the num-ber of adjaent swaps that are required to bring σ−1 to σ−1
0 . Like Gaussians,distane based models tend to lak �exibility, and so (Lebanon & Mao, 2008)propose a nonparametri model of ranked (and partially ranked) data based onplaing weighted Mallows kernels on top of training examples, whih, as theyshow, an realize a far riher lass of distributions, and an be learned e�iently.However, they do not address the inferene problem, and it is not lear if one ane�iently perform inferene operations like marginalization and onditioning insuh models.As we have shown in this paper, Fourier based methods (Diaonis, 1988;Kondor et al., 2007; Huang et al., 2007) o�er a prinipled alternative method forompatly representing distributions over permutations and performing e�ientprobabilisti inferene operations. Our work draws from two strands of researh� one from the data assoiation/identity management literature, and one froma more theoretial area on Fourier analysis in statistis. In the following, wereview several of the works whih have led up to our urrent Fourier basedapproah.9.1 Previous work in identity managementThe identity management problem has been addressed in a number of previousworks, and is losely related to, but not idential with, the lassial data assoi-ation problem of maintaining orrespondenes between traks and observations.Both problems need to address the fundamental ombinatorial hallenge thatthere is a fatorial or exponential number of assoiations to maintain betweentraks and identities, or between traks and observations respetively. A vastliterature already exists on the the data assoiation problem, beginning withthe multiple hypothesis testing approah (MHT) of (Reid, 1979). The MHT is a`deferred logi' method in whih past observations are exploited in forming newhypotheses when a new set of observations arises. Sine the number of hypothe-ses an grow exponentially over time, various heuristis have been proposed tohelp ope with the omplexity blowup. For example, one an hoose to maintainonly the k best hypotheses for some parameter k (Cox & Hingorani, 1994), usingMurty's algorithm (Murty, 1968). But for suh an approximation to be e�e-tive, k may still need to sale exponentially in the number of objets. A slightlymore reent �ltering approah is the joint probabilisti data assoiation �lter(JPDA) (Bar-Shalom & Fortmann, 1988), whih is a suboptimal single-stageapproximation of the optimal Bayesian �lter. JPDA makes assoiations sequen-tially and is unable to orret erroneous assoiations made in the past (Poore,1995). Even though the JPDA is more e�ient than the MHT, the alulationof the JPDA assoiation probabilities is still a #P-omplete problem (Collins& Uhlmann, 1992), sine it e�etively must ompute matrix permanents. Poly-nomial approximation algorithms to the JPDA assoiation probabilities havereently been studied using Markov hain Monte Carlo (MCMC) methods (Ohet al., 2004; Oh & Sastry, 2005).The identity management problem was �rst expliitly introdued in (Shin40



et al., 2003). Identity management di�ers from the lassial data assoiationproblem in that its observation model is not onerned with the low-level trak-ing details but instead with high level information about objet identities. (Shinet al., 2003) introdued the notion of the belief matrix approximation of the asso-iation probabilities, whih ollapses a distribution over all possible assoiationsto just its �rst-order marginals. In the ase of n traks and n identities, thebelief matrix B is an n × n doubly-stohasti matrix of non-negative entries
bij , where bij is the probability that identity i is assoiated with trak j. Aswe already saw in Setion 4, the belief matrix approximation is equivalent tomaintaining the zeroth- and �rst-order Fourier oe�ients. Thus our urrentwork is a strit generalization and extension of those previous results.An alternative representation that has also been onsidered is an informationtheoreti approah (Shin et al., 2005; Shumitsh et al., 2005; Shumitsh et al.,2006) in whih the density is parameterized as:

P (σ; Ω) ∝ expTr (ΩT · τ(n−1,1)(σ)
)
.In our framework, the information form approah an be viewed as a method formaintaining the Fourier transform of the log probability distribution at only the�rst two irreduibles. The information matrix approah is espeially attrativein a distributed sensor network setting, sine, if the olumns of the informationmatrix are distributed to leader nodes traking the respetive targets, then theobservation events beome entirely loal operations, avoiding the more expen-sive Kroneker onditioning algorithm in our setting. On the other hand, theinformation matrix oe�ients do not have the same intuitive marginals inter-pretation a�orded in our setting, and moreover, predition/rollup steps annotbe performed analytially in the information matrix form. As in many las-sial data strutures problems there are representation trade-o� issues: someoperations are less expensive in one representation and some operations in thethe other. The best hoie in any partiular senario will depend on the ratiobetween observation and mixing events.9.2 Previous work on Fourier-based approximationsThe onept of using Fourier transforms to study probability distributions ongroups is not new, with the earliest papers in this area having been publishedin the 1960s (Grenander, 1963). (Willsky, 1978) was the �rst to formulate theexat �ltering problem in the Fourier domain for �nite and loally ompatLie groups and ontributed the �rst nonommutative Fast Fourier Transformalgorithm (for Metayli groups). However, he does not address approximateinferene, suggesting instead to always transform to the appropriate domainfor whih either the predition/rollup or onditioning operations an be aom-plished using a pointwise produt. While providing signi�ant improvements inomplexity for smaller groups, his approah is still infeasible for our problemgiven the fatorial order of the Symmetri group.(Diaonis, 1988) utilized the Fourier transform to analyze probability distri-butions on the Symmetri group in order to study ard shu�ing and ranking41



problems. His work laid the ground for muh of the progress made over the lasttwo deades on probabilisti group theory and nonommutative FFT algorithms(Clausen & Baum, 1993; Rokmore, 2000).(Kondor et al., 2007) was the �rst to show that the data assoiation prob-lem ould be e�iently approximated using FFT fatorizations. In ontrast toour framework where every model is assumed to be have been spei�ed in theFourier domain, they work with an observation model whih an be written inthe primal domain.Coneptually, their onditioning algorithm applies the Inverse Fast FourierTransform (IFFT) to the prior distribution, onditions in the primal domainusing pointwise multipliation, then transforms bak up to the Fourier domainusing the FFT to obtain posterior Fourier oe�ients. While their proedurewould ordinarily be intratable beause of the fatorial number of permutations,they show that for simple observation models, suh as that given in Equation 8.1,it is not neessary to perform the full FFT reursion to do a pointwise prod-ut. They exploit this observation to formulate a onditioning algorithm whoserunning time depends on the omplexity of the observation model (whih anroughly be measured by the number of irreduibles required to fully speify it).In the worst ase, when the likelihood funtion is spei�ed for eah σ ∈ Sn, thenthe ost of onditioning is dominated by the ost of alling an FFT, whih is
O(n! logn!).In the ase that the observation model is spei�ed at su�iently many irre-duibles, our onditioning algorithm (prior to the projetion step) returns thesame approximate probabilities as the FFT-based algorithm. For example, wean show that the observation model given in Equation 8.1 is fully spei�ed bytwo Fourier omponents, and that both algorithms have idential output. Inthis setting, our asymptoti time omplexity is O(D3n2), where D is the degreeof the largest maintained irreduible representation. The FFT-based algorithmsaves a fator of D due to the fat that ertain representation matries an beshown to be sparse. Though we do not prove it, we observe that the Clebsh-Gordan oe�ients Cij are typially similarly sparse (see Figure 7(d)), whihyields an equivalent running time in pratie. In addition, Kondor et al. do notaddress the issue of projeting onto legal distributions, whih, as we show inour experimental results is fundamental in pratie.10 Experimental resultsIn this setion we present the results of several experiments to validate our algo-rithm. We evaluate performane �rst by measuring the quality of our approxi-mation for problems where the true distribution is known. Instead of measuringa distane between the true distribution and the inverse Fourier transform ofour approximation, it makes more sense in our setting to measure error onlyat the marginals whih are maintained by our approximation. In the resultsreported below, we measure the L1 error between the true matrix of marginalsand the approximation. If nonnegative marginal probabilities are guaranteed,it also makes sense to measure KL-divergene.42
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(d) Clebsh-Gordan Sparsity: We measuredthe sparsity of the Clebsh-Gordan oe�-ients matries by plotting the reiproal ofthe fration of nonzero entries against n. Astraight line in the plot means that the num-ber of nonzero entries sales linearly in n, anda onvex urve sales better than linearly.Figure 7:10.1 Simulated dataWe �rst tested the auray of a single Kroneker onditioning step by allingsome number of pairwise mixing events (whih an be thought roughly as ameasure of entropy), followed by a single �rst-order observation. In the y-axisof Figure 7(a), we plot the Kullbak-Leibler divergene between the true �rst-order marginals and approximate �rst-order marginals returned by Kronekeronditioning. We ompared the results of maintaining �rst-order, and seond-order (unordered and ordered) marginals. As shown in Figure 7(a), Kronekeronditioning is more aurate when the prior is smooth and unsurprisingly,when we allow for higher order Fourier terms. As guaranteed by Theorem 21,we also see that the �rst-order terms of the posterior are exat when we maintainseond-order (ordered) marginals. 43



To understand how our algorithms perform over many timesteps (whereerrors an propagate to all Fourier terms), we ompared to exat infereneon syntheti datasets in whih traks are drawn at random to be observed orswapped. As a baseline, we show the auray of a uniform distribution. Weobserve that the Fourier approximation is better when there are either moremixing events (the fration of onditioning events is smaller), or when moreFourier oe�ients are maintained, as shown in Figure 7(b). We also see thatthe Planherel Projetion step is fundamental, espeially when mixing eventsare rare.Figures 8(a) and 8(b) show the per-timeslie auray of two typial runs ofthe algorithm. The fration of onditioning events is 50% in Figure 8(a), and
70% in Figure 8(b). What we typially observe is that while the projeted andnonprojeted auraies are often quite similar, the nonprojeted marginals anperform signi�antly worse during ertain segments.Finally, we ompared running times against an exat inferene algorithmwhih performs predition/rollup in the Fourier domain and onditioning in theprimal domain. Instead of the naive O((n!)2) omplexity, its running time isa more e�ient O(n3n!) due to the Fast Fourier Transform (Clausen & Baum,1993). It is lear that our algorithm sales graefully ompared to the exatsolution (Figure 7()), and in fat, we ould not run exat inferene for n > 8 dueto memory onstraints. In Figure 7(d), we show empirially that the Clebsh-Gordan oe�ients are indeed sparse, supporting our onjetured runtime of
O(D2n2) instead of O(D3n2).10.2 Real amera networkWe also evaluated our algorithm on data taken from a real network of eightameras (Fig. 9(a)). In the data, there are n = 11 people walking around aroom in fairly lose proximity. To handle the fat that people an freely leaveand enter the room, we maintain a list of the traks whih are external to theroom. Eah time a new trak leaves the room, it is added to the list and amixing event is alled to allow for m2 pairwise swaps amongst the m externaltraks.The number of mixing events is approximately the same as the number ofobservations. For eah observation, the network returns a olor histogram ofthe blob assoiated with one trak trak. The task after onditioning on eahobservation is to predit identities for all traks whih are inside the room,and the evaluation metri is the fration of aurate preditions. We omparedagainst a baseline approah of prediting the identity of a trak based on themost reently observed histogram at that trak. This approah is expeted tobe aurate when there are many observations and disriminative appearanemodels, neither of whih our problem a�orded. As Figure 9(b) shows, boththe baseline and �rst order model(without projetion) fared poorly, while theprojetion step dramatially boosted the predition auray for this problem.To illustrate the di�ulty of prediting based on appearane alone, the rightmostbar re�ets the performane of an omnisient traker who knows the result of44
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(a) n = 6 with 50% mixing events and 50% observations
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(b) n = 6 with 30% mixing events and 70% observationsFigure 8: Auray as a funtion of time on two typial runs.eah mixing event and is therefore left only with the task of distinguishingbetween appearanes. We onjeture that the performane of our algorithm(with projetion) is near optimal.11 Future researhThere remain several possible extensions to the urrent work stemming fromboth pratial and theoretial onsiderations. We list a few open questions andextensions in the following.Adaptive �ltering. While our urrent algorithms easily beat exat inferenein terms of running time, they are still limited by a relatively high (thoughpolynomial) time omplexity. In pratie however, it seems reasonable to believethat the �di�ult� identity management problems typially involve only a smallsubset of people at a time. A useful extension of our work would be to devisean adaptive version of the algorithm whih alloates more Fourier oe�ientstowards the identities whih require higher order reasoning. We believe thatthis kind of extension would be the appropriate way to sale our algorithm tohandling massive numbers of objets at a time.45
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(b) Auray for Camera DataFigure 9: Evaluation on dataset from a real amera network.Charaterizing the marginal polytope. In our paper, we presented a pro-jetion of the bandlimited distribution to a ertain polytope, whih is exatlythe marginal polytope for �rst-order bandlimited distributions, but stritly anouter bound for higher orders. An interesting projet would be to generalize theBirkho�-von Neumann theorem by exatly haraterizing the marginal polytopeat higher order marginals. We onjeture that the marginal polytope for loworder marginals an be desribed with polynomially many onstraints.Learning in the Fourier domain. Another interesting problem is whetherwe an learn bandlimited mixing and observation models diretly in the Fourierdomain. Given fully observed permutations σ1, . . . , σm, drawn from a distribu-tion P (σ), a naive method for estimating P̂ρ at low-order ρ is to simply observethat:
P̂ρ = Eσ∼P [ρ(σ)],and so one an estimate the Fourier transform by simply averaging ρ(σi) overall σi. However, sine we typially do not observe full permutations in realappliations like ranking or identity management, it would be interesting to es-timate Fourier transforms using partially observed data. In the ase of Bayesianlearning, it may be possible to apply some of the tehniques disussed in thispaper.Probabilisti inferene on other groups. The Fourier theoreti frameworkpresented in this paper is not spei� to the Symmetri group - in fat, the pre-dition/rollup and onditioning formulations, as well as most of the results fromAppendix B hold over any �nite or ompat Lie group. As an example, the non-ommutative group of rotation operators in three dimensions, SO(3), appearsin settings whih model the pose of a three dimensional objet. Elements in

SO(3) might be used to represent the pose of a robot arm in robotis, or theorientation of a mesh in omputer graphis; In many settings, it would be use-ful to have a ompat representation of unertainty over poses. We believe that46



there are many other appliation domains with algebrai struture where similarprobabilisti inferene algorithms might apply, and in partiular, that nonom-mutative settings o�er a partiularly hallenging but exiting opportunity formahine learning researh.12 ConlusionsWe have presented an intuitive method for ompatly summarizing distributionson permutations with Fourier analyti interpretations and tuneable approxi-mation quality. We showed that the Fourier theoreti point of view makes itpossible to formulate general inferene operations ompletely in the Fourier do-main. In partiular, we developed the Kroneker Conditioning algorithm whihperforms a onvolution-like operation on Fourier oe�ients to �nd the Fouriertransform of the posterior distribution. We analyzed the soures of error in ourapproximations and argued that bandlimited onditioning an result in Fourieroe�ients whih orrespond to no valid distribution, but that the problem anbe remedied by projeting to a relaxation of the marginal polytope.Our evaluation on data from a amera network shows that our methodsperform well when ompared to the optimal solution in small problems, or toan omnisient traker in large problems. Furthermore, we demonstrated thatour projetion step is fundamental to obtaining these high-quality results.Finally we onlude by remarking again that the mathematial frameworkdeveloped in our paper is quite general. In fat, both the predition/rollupand onditioning formulations hold over any �nite group, providing a prinipledmethod for approximate inferene for problems with underlying group struture.AknowledgmentsThis work is supported in part by the O�e of Naval Researh under MURIN000140710747, the Army Researh O�e under grant W911NF-06-1-0275, theNational Siene Foundation under grants DGE-0333420, EEEC-540865, NeTS-NOSS 0626151 and TF 0634803, and by the Pennsylvania Infrastruture Teh-nology Alliane (PITA). Carlos Guestrin was also supported in part by an AlfredP. Sloan Fellowship. We are grateful to Kyle Heath for olleting the ameradata and to Robert Hough and Emre Oto for helpful and insightful disussions.ReferenesBalakrishnan, H., Hwang, I., & Tomlin, C. J. (2004). Polynomial approximationalgorithms for belief matrix maintenane in identity management. Proeedingsof the 43rd IEEE Conferene on Deision and Control, Bahamas.Bar-Shalom, Y., & Fortmann, T. (1988). Traking and data assoiation. Aa-demi Press. 47
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1 2 3
4 5

6= 1 3 2
5 4

(as Young tableaux).A Young Tableau t is said to be standard if its entries are inreasing to theright along rows and down olumns. For example, the set of all standard YoungTableaux of shape λ = (3, 2) is:


1 3 5
2 4

,
1 2 5
3 4

,
1 3 4
2 5

,
1 2 4
3 5

,
1 2 3
4 5

ff

. (A.1)Given a permutation σ ∈ Sn, one an always apply σ to a Young tableau t toget a new Young tableau, whih we denote by σ ◦ t, by permuting the labelswithin the tableau. For example,
(1, 2) ◦ 1 2 3

4 5
= 2 1 3

4 5
.Note, however, that even if t is a standard tableau, σ ◦ t is not guaranteed tobe standard.The signi�ane of the standard tableaux is that the set of all standardtableaux of shape λ an be used to index the set of GZ basis vetors for the irre-duible representation ρλ. Sine there are �ve total standard tableaux of shape

(3, 2), we see, for example, that the irreduible orresponding to the partition
(3, 2) is 5-dimensional. There is a simple reursive proedure for enumeratingthe set of all standard tableaux of shape λ, whih we illustrate for λ = (3, 2).Example 25. If λ = (3, 2), there are only two possible boxes that the label 5an oupy so that both rows and olumns are inreasing. They are:

5
, and

5
.To enumerate the set of all standard tableaux of shape (3, 2), we need to �ll theempty boxes in the above partially �lled tableaux with the labels {1, 2, 3, 4} sothat both rows and olumns are inreasing. Enumerating the standard tableauxof shape (3, 2) thus redues to enumerating the set of standard tableaux of shapes

(2, 2) and (3, 1), respetively. For (2, 2), the set of standard tableaux (whih, inimplementation would be omputed reursively) is:


1 3
2 4

,
1 2
3 4

ff

,and for (3, 1), the set of standard tableaux is:


1 3 4
2

,
1 2 4
3

,
1 2 3
4

ff

.The entire set of standard tableaux of shape (3, 2) is therefore:


1 3 5

2 4
,

1 2 5

3 4

ff

[



1 3 4
2 5

,
1 2 4
3 5

,
1 2 3
4 5

ff

.Before expliitly onstruting the representation matries, we must de�ne asigned distane on Young Tableaux alled the axial distane.51



De�nition 26. The axial distane, dt(i, j), between entries i and j in tableau
t, is de�ned to be:

dt(i, j) ≡ (col(t, j)− col(t, i))− (row(t, j) − row(t, i)),where row(t, i) denotes the row of label i in tableau t, and col(t, i) denotes theolumn of label i in tableau t.Intuitively, the axial distane between i− 1 and i in a standard tableau t isequal to the (signed) number of steps that are required to travel from i− 1 to
i, if at eah step, one is allowed to traverse a single box in the tableau in one ofthe four ardinal diretions. For example, the axial distane from 3 to 4 withrespet to tableau: t = 1 2 3

4 5
is:

dt(3, 4) =
(
col
(

1 2 3
4 5

, 4
)
− col

(
1 2 3
4 5

, 3
))
−
(
row

(
1 2 3
4 5

, 4
)
− row

(
1 2 3
4 5

, 3
))

= (1 − 3)− (2− 1) = −3A.1 Construting representation matries for adjaent trans-positionsIn the following disussion, we will onsider a �xed ordering, t1, . . . , tdλ
, on theset of standard tableaux of shape λ and refer to both standard tableaux andolumns of ρλ(σ) interhangeably. Thus t1 refers to �rst olumn, t2 refers tothe seond olumn and so on. And we will index elements in ρλ(σ) using pairsof standard tableau, (tj , tk).To expliitly de�ne the representation matries with respet to the GZ basis,we will �rst onstrut the matries for adjaent transpositions (i.e., permuta-tions of the form (i− 1, i)), and then we will onstrut arbitrary representationmatries by ombining the matries for the adjaent transpositions. The rulefor onstruting the matrix oe�ient [ρλ(i− 1, i)]tj ,tk

is as follows.1. De�ne the (tj , tk) oe�ient of ρλ(i−1, i) to be zero if it is (1), o�-diagonal(j 6= k) and (2), not of the form (tj , (i− 1, i) ◦ tk).2. If (tj , tk) is a diagonal element, (i.e., of the form (tj , tj)), de�ne:
[ρλ(i− 1, i)]tj ,tj

= 1/dtj
(i− 1, i),where dtj

(i − 1, i) is the axial distane whih we de�ned earlier in thesetion.3. If (tj , tk) an be written as (tj , (i− 1, i) ◦ tj) de�ne:
[ρλ(i− 1, i)]tj ,σ◦tj

=
√

1− 1/d2
tj

(i− 1, i).Note that the only time that o�-diagonal elements an be nonzero under theabove rules is when (i − i, i) ◦ tj happens to also be a standard tableau. If weapply an adjaent transposition, σ = (i−1, i) to a standard tableau t, then σ ◦ tis guaranteed to be standard if and only if i− 1 and i were neither in the samerow nor olumn of t. This an be seen by examining eah ase separately.52



Algorithm 3: Pseudoode for omputing irreduible representations ma-tries with respet to the Gel'fand-Tsetlin basis at adjaent transpositions.adjaentrhoinput : i ∈ {2, . . . , n}, λoutput: ρλ(i− 1, i)
ρ← 0dλ×dλ

;1 foreah standard tableaux t of shape λ do2
d← (col(t, i)− col(t, i− 1))− (row(t, i) − row(t, i − 1));3
ρ(t, t)← 1/d;4 if i− 1 and i are in di�erent rows and olumns of t then5

ρ((i− 1, i)(t), t)←
√

1− 1/d2;6 return ρ ;7 1. i− 1 and i are in the same row or same olumn of t. If i and i− 1are in the same row of t, then i − 1 lies to the left of i. Applying σ ◦ tswaps their positions so that i lies to the left of i− 1, and so we see that
σ ◦ t annot be standard. For example,

(3, 4) ◦ 1 2 5
3 4

= 1 2 5
4 3

.Similarly, we see that if i and i − 1 are in the same olumn of t, σ ◦ tannot be standard. For example,
(3, 4) ◦ 1 3 5

2 4
= 1 4 5

2 3
.2. i − 1 and i are neither in the same row nor olumn of t. In theseond ase, σ ◦ t an be seen to be a standard tableau due to the fatthat i− 1 and i are adjaent indies. For example,

(3, 4) ◦ 1 2 3

4 5
= 1 2 4

3 5
.Therefore, to see if (i− 1, i) ◦ t is standard, we need only hek to see that

i− 1 and i are in di�erent rows and olumns of the tableau t. The pseudoodefor onstruting the irreduible representation matries for adjaent swaps issummarized in Algorithm 3. Note that the matries onstruted in the algorithmare sparse, with no more than two nonzero elements in any given olumn.Example 27. We ompute the representation matrix of ρ(3,2) evaluated at theadjaent transposition σ = (i− 1, i) = (3, 4). For this example, we will use theenumeration of the standard tableaux of shape (3, 2) given in Equation A.1.For eah (3, 2)-tableau tj , we identify whether σ ◦ tj is standard and omputethe axial distane from 3 to 4 on the tableau tj .
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j 1 2 3 4 5
tj

1 3 5
2 4

1 2 5
3 4

1 3 4

2 5
1 2 4

3 5
1 2 3

4 5

(3, 4) ◦ tj
1 4 5
2 3

1 2 5
4 3

1 4 3

2 5
1 2 3

4 5
1 2 4

3 5

(3, 4) ◦ tj Standard? No No No Yes Yesaxial distane (dtj
(3, 4)) -1 1 1 3 -3Putting the results together in a matrix yields:,

ρ(3,2)(3, 4) =




t1 t2 t3 t4 t5
t1 −1
t2 1
t3 1

t4
1
3

√
8
9

t5

√
8
9 − 1

3




,where all of the empty entries are zero.A.2 Construting representation matries for general per-mutationsTo onstrut representation matries for general permutations, it is enough toobserve that all permutations an be fatored into a sequene of adjaent swaps.For example, the permutation (1, 2, 5) an be fatored into:
(1, 2, 5) = (4, 5)(3, 4)(1, 2)(2, 3)(3, 4)(4, 5),and hene, for any partition λ,

ρλ(1, 2, 5) = ρλ(4, 5) · ρλ(3, 4) · ρλ(1, 2) · ρλ(2, 3) · ρλ(3, 4) · ρλ(4, 5),sine ρλ is a group representation. Algorithmially, fatoring a permutation intoadjaent swaps looks very similar to the Bubblesort algorithm, and we show thepseudoode in Algorithm 4.B Deomposing the tensor produt representa-tionWe now turn to the Tensor Produt Deomposition problem, whih is that of�nding the irreduible omponents of the typially reduible tensor produtrepresentation. If ρλ and ρµ are irreduible representations of Sn, then thereexists an intertwining operator Cλµ suh that:
Cλµ

−1 · (ρλ ⊗ ρµ(σ)) · Cλµ =
⊕

ν

zλµν⊕

ℓ=1

ρν(σ). (B.1)54



Algorithm 4: Pseudoode for omputing irreduible representation ma-tries for arbitrary permutations.getrhoinput : σ ∈ Sn, λoutput: ρλ(σ) (a dλ × dλ matrix)//Use Bubblesort to fator σ into a produt of transpositions1
k ← 0 ;2
factors← ∅;3 for i = 1, 2, . . . , n do4 for j = n, n− 1, . . . , i+ 1 do5 if σ(j) < σ(j − 1) then6 Swap(σ(j − 1), σ(j)) ;7

k ← k + 1 ;8
factors(k)← j ;9 //Construt representation matrix using adjaent transpositions10

ρλ(σ)← Idλ×dλ
;11

m← length(factors);12 for j = 1, . . . ,m do13
ρλ(σ)← getadjaentrho (factors(j), λ) · ρλ(σ) ;14In this setion, we will present a set of numerial methods for omputing theClebsh-Gordan series (zλµν) and Clebsh-Gordan oe�ients (Cλµ) for a pairof irreduible representations ρλ ⊗ ρµ. We begin by disussing two methodsfor omputing the Clebsh-Gordan series. In the seond setion, we provide ageneral algorithm for omputing the intertwining operators whih relate twoequivalent representations and disuss how it an be applied to omputingthe Clebsh-Gordan oe�ients (Equation B.1) and the matries whih relatemarginal probabilities to irreduible Fourier oe�ients (Equation 5.4).B.1 Computing the Clebsh-Gordan seriesWe begin with a simple, well-known algorithm based on group haraters foromputing the Clebsh-Gordan series that turns out to be omputationally in-tratable, but yields several illuminating theoretial results. See (Serre, 1977)for proofs of the theoretial results ited in this setion.One of the main results of representation theory was the disovery that thereexists a relatively ompat way of enoding any representation up to equivalenewith a vetor whih we all the harater of the representation. If ρ is a rep-resentation of a group G, then the harater of the representation ρ, is de�nedsimply to be the trae of the representation at eah element σ ∈ G:

χρ(σ) = Tr (ρ(σ)) .The reason haraters have been so extensively studied is that they uniquelyharaterize a representation up to equivalene in the sense that two haraters55



χρ1 and χρ2 are equal if and only if ρ1 and ρ2 are equivalent as representations.Even more surprising is that the spae of possible group haraters is orthog-onally spanned by the haraters of the irreduible representations. To makethis preise, we �rst de�ne an inner produt on funtions from G.De�nition 28. Let φ, ψ be two real-valued funtions on G. The inner produtof φ and ψ is de�ned to be:
〈φ, ψ〉 ≡ 1

|G|
∑

σ∈G

φ(σ)ψ(σ)With respet to the above inner produt, we have the following importantresult whih allows us to test a given representation for irreduibility, and totest two irreduibles for equivalene.Proposition 29. Let χρ1 and χρ2 be haraters orresponding to irreduiblerepresentations. Then
〈χρ1 , χρ2〉 =

{
1 if ρ1 ≡ ρ2

0 otherwise .Proposition 29 shows that the irreduible haraters form an orthonormalset of funtions. The next proposition says that the irreduible haraters spanthe spae of all possible haraters.Proposition 30. Suppose ρ is any representation of G and whih deomposesinto irreduibles as:
ρ ≡

⊕

λ

zλ⊕

ℓ=1

ρλ,where λ indexes over all irreduibles of G. Then:1. The harater of ρ is a linear ombination of irreduible haraters (χρ =∑
λ zλχρλ

),2. and the multipliity of eah irreduible, zλ, an be reovered using 〈χρ, χρλ
〉 =

zλ.A simple way to deompose any group representation ρ, is given by Propo-sition 30, whih says that we an take inner produts of χρ against the basis ofirreduible haraters to obtain the irreduible multipliities zλ. To treat thespeial ase of �nding the Clebsh-Gordan series, one observes that the hara-ter of the tensor produt is simply the pointwise produt of the haraters ofeah tensor produt fator.Theorem 31. Let ρλ and ρµ be irreduible representations with haraters
χλ, χµ respetively. Let zλµν be the number of opies of ρν in ρλ ⊗ ρµ (hene,one term of the Clebsh-Gordan series). Then:56



1. The harater of the tensor produt representation is given by:
χρλ⊗ρµ

= χλ · χµ =
∑

ν

zλµνχν . (B.2)2. The terms of the Clebsh-Gordan series an be omputed using:
zλµν =

1

|G|
∑

g∈G

χλ(g) · χµ(g) · χν(g), (B.3)and satisfy the following symmetry:
zλµν = zλνµ = zµλν = zµνλ = zνλµ = zνµλ. (B.4)Dot produts for haraters on the symmetri group an be done in O(#(n))time where #(n) is the number of partitions of the number n, instead of thenaive O(n!) time. In pratie however, #(n) also grows too quikly for theharater method to be tratable.B.1.1 Murnaghan's formulasA theorem by Murnaghan (Murnaghan, 1938) gives us a `bound' on whih rep-resentations an appear in the tensor produt deomposition on Sn.Theorem 32. Let ρ1, ρ2 be the irreduibles orresponding to the partition (n−

p, λ2, . . . ) and (n − q, µ2, . . . ) respetively. Then the produt ρ1 ⊗ ρ2 does notontain any irreduibles orresponding to a partition whose �rst term is lessthan n− p− q.In view of the onnetion between the Clebsh-Gordan series and onvolutionof Fourier oe�ients, Theorem 32 is analogous to the fat that for funtionsover the reals, the onvolution of two ompatly supported funtions is alsoompatly supported.We an use Theorem 32 to show that Kroneker onditioning is exat atertain irreduibles.of Theorem 21. Let Λ denote the set of irreduibles at whih our algorithmmaintains Fourier oe�ients. Sine the errors in the prior ome from settingoe�ients outside of Λ to be zero, we see that Kroneker onditioning returnsan approximate posterior whih is exat at the irreduibles in
ΛEXACT = {ρν : zλµν = 0, where λ /∈ Λ and µD (n− q, µ2, . . . )}.Combining Theorem 32 with Equation B.4: if zλµν > 0, with λ = (n −

p, λ2, λ3, . . . ), µ = (n − q, µ2, µ3, . . . ) and ν = (n − r, ν2, ν3, . . . ), then we havethat: r ≤ p+ q, p ≤ q+ r, and q ≤ p+ r. In partiular, it implies that r ≥ p− qand r ≥ q−p, or more suintly, r ≥ |p− q|. Hene, if ν = (n− r, ν2, . . . ), then
ρν ∈ ΛEXACT whenever r ≤ |p− q|, whih proves the desired result.57



The same paper (Murnaghan, 1938) derives several general Clebsh-Gordanseries formulas for pairs of low-order irreduibles in terms of n, and in partiular,derives the Clebsh-Gordan series for many of the Kroneker produt pairs thatone would likely enounter in pratie. For example,
• ρ(n−1,1) ⊗ ρ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1)

• ρ(n−1,1) ⊗ ρ(n−2,2) ≡ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1)

• ρ(n−1,1)⊗ρ(n−2,1,1) ≡ ρ(n−1,1)⊕ρ(n−2,2)⊕ρ(n−2,1,1)⊕ρ(n−3,2,1)⊕ρ(n−3,1,1,1)

• ρ(n−1,1) ⊗ ρ(n−3,3) ≡ ρ(n−2,2) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1) ⊕ ρ(n−4,4) ⊕ ρ(n−4,3,1)B.2 Computing the Clebsh-Gordan oe�ientsIn this setion, we onsider the general problem of �nding an orthogonal operatorwhih deomposes an arbitrary representation,X(σ), of a �nite groupG. Unlikethe Clebsh-Gordan series whih are basis-independent, intertwining operatorsmust be reomputed if we hange the underlying basis by whih the irreduiblerepresentation matries are onstruted. However, for a �xed basis, we remindthe reader that these intertwining operators need only be omputed one andfor all and an be stored in a table for future referene. Let X be any degree dgroup representation of G, and let Y be an equivalent diret sum of irreduibles,e.g.,
Y (σ) =

⊕

ν

zν⊕

ℓ=1

ρν(σ), (B.5)where eah irreduible ρν has degree dν . We would like to ompute an in-vertible (and orthogonal) operator C, suh that C · X(σ) = Y (σ) · C, for all
σ ∈ G. Throughout this setion, we will assume that the multipliities zν areknown. To ompute Clebsh-Gordan oe�ients, for example, we would set
X = ρλ ⊗ ρµ, and the multipliities would be given by the Clebsh-Gordanseries (Equation B.1). To �nd the matrix whih relates marginal probabilitiesto irreduible oe�ients, we would set X = τλ, and the multipliities would begiven by the Kostka numbers (Equation 5.4).We will begin by desribing an algorithm for omputing a basis for the spaeof all possible intertwining operators whih we denote by:Int[X;Y ] = {C ∈ R

d×d : C ·X(σ) = Y (σ) · C, ∀σ ∈ G}.We will then disuss some of the theoretial properties of Int[X;Y ] and show howto e�iently selet an orthogonal element of Int[X;Y ].Our approah is to naively8 view the task of �nding elements of Int[X;Y ]as a similarity matrix reovery problem, with the twist that the similarity ma-trix must be onsistent over all group elements. We �rst ast the problem ofreovering a similarity matrix as a nullspae omputation.8In implementation, we use a more e�ient algorithm for omputing intertwining operatorsknown as the Eigenfuntion Method (EFM) (Chen, 1989). Unfortunately, the EFM is tooompliated for us to desribe in this paper. The method whih we desribe in this appendixis oneptually simpler than the EFM and generalizes easily to groups besides Sn.58



Proposition 33. Let A,B,C be matries and let KAB = I⊗A−BT ⊗I. Then
AC = CB if and only if ve(C) ∈ Nullspae(KAB).Proof. A well known matrix identity (van Loan, 2000) states that if A,B,Care matries, then ve(ABC) =

(
CT ⊗A

) ve(B). Applying the identity to
AC = CB, we have: ve(ACI) = ve(ICB),and after some manipulation:

(
I ⊗A−BT ⊗ I

) ve(C) = 0,showing that ve(C) ∈ Nullspae(KAB).For eah σ ∈ G, the nullspae of the matrix K(σ) onstruted using theabove proposition as:
K(σ) = I ⊗ Y (σ) −X(σ)⊗ I, (B.6)where I is a d×d identity matrix, orresponds to the spae of matries Cσ suhthat

Cσ ·X(σ) = Y (σ) · C, for all σ ∈ G.To �nd the spae of intertwining operators whih are onsistent aross all groupelements, we need to �nd the intersetion:
⋂

σ∈G

Nullspace(K(σ)). (B.7)At �rst glane, it may seem that omputing the intersetion might require exam-ining n! nullspaes if G = Sn, but as luk would have it, most of the nullspaesin the intersetion are extraneous, as we now show.De�nition 34. We say that a �nite group G is generated by a set of generators
S = {g1, . . . , gm} if every element of G an be written as a �nite produt ofelements in S.For example, the following three sets are all generators for Sn:
• {(1,2),(1,3),. . . ,(1,n)},
• {(1,2),(2,3),(3,4),. . . ,(n− 1,n)}, and
• {(1,2),(1,2,3,. . . ,n)}.To ensure a onsistent similarity matrix for all group elements, we use thefollowing proposition whih says that it su�es to be onsistent on any set ofgenerators of the group.Proposition 35. Let X and Y be representations of �nite group G and supposethat G is generated by the elements σ1, . . . , σm. If there exists an invertible linearoperator C suh that C ·X(σi) = Y (σi) ·C for eah i ∈ {1, . . . ,m}, then X and

Y are equivalent as representations with C as the intertwining operator.59



Proof. We just need to show that C is a similarity transform for any otherelement of G as well. Let π be any element of G and suppose π an be writtenas the following produt of generators: π =
∏n

i=1 σi. It follows that:
C−1 · Y (π) · C = C−1 · Y

(∏

i

σi

)
· C = C−1 ·

(∏

i

Y (σi)

)
· C

= (C−1 · Y (σ1) · C)(C−1 · Y (σ2) · C) · · · (C−1 · Y (σm) · C)

=
∏

i

(
C−1 · Y (σi) · C

)
=
∏

i

X(σi) = X

(∏

i

σi

)
= X(π)Sine this holds for every π ∈ G, we have shown C to be an intertwining operatorbetween the representations X and Y .The good news is that despite having n! elements, Sn an be generated byjust two elements, namely, (1, 2) and (1, 2, . . . , n), and so the problem redues tosolving for the intersetion of two nullspaes, (K(1, 2) ∩K(1, 2, . . . , n)), whihan be done using standard numerial methods. Typially, the nullspae ismultidimensional, showing that, for example, the Clebsh-Gordan oe�ientsfor ρλ ⊗ ρµ are not unique even up to sale.Beause Int[X;Y ] ontains singular operators (the zero matrix is a memberof Int[X;Y ], for example), not every element of Int[X;Y ] is atually a legitimateintertwining operator as we require invertibility. In pratie, however, sine thesingular elements orrespond to a measure zero subset of Int[X;Y ], one methodfor reliably seleting an operator from Int[X;Y ] that �works� is to simply seleta random element from the nullspae to be C. It may, however, be desirableto have an orthogonal matrix C whih works as an intertwining operator. Inthe following, we disuss an objet alled the Commutant Algebra whih willlead to several insights about the spae Int[X;Y ], and in partiular, will lead toan algorithm for `modifying' any invertible intertwining operator C to be anorthogonal matrix.De�nition 36. The Commutant Algebra of a representation Y is de�ned to bethe spae of operators whih ommute with Y 9:ComY = {S ∈ R

d×d : S · Y (σ) = Y (σ) · S, ∀σ ∈ G}.The elements of the Commutant Algebra of Y an be shown to always takeon a partiular onstrained form (shown using Shur's Lemma in (Sagan, 2001)).In partiular, every element of ComY takes the form
S =

⊕

ν

(Mzν
⊗ Idν

) , (B.8)where Mzν
is some zν × zν matrix of oe�ients and Idν

is the dν × dν identity(reall that the zν are the multipliities from Equation B.5). Moreover, it an9Notie that the de�nition of the Commutant Algebra does not involve the representation
X. 60



be shown that every matrix of this form must neessarily be an element of theCommutant Algebra.The link between ComY and our problem is that the spae of intertwiningoperators an be thought of as a `translate' of the Commutant Algebra.Lemma 37. There exists a vetor spae isomorphism between Int[X;Y ] andComY .Proof. Let R be any invertible element of Int[X;Y ] and de�ne the linear map
f : ComY → Rd×d by: f : S 7→ (S ·R). We will show that the image of f isexatly the spae of intertwining operators. Consider any element σ ∈ G:

(S ·R) ·X(σ) · (S ·R)−1 = S · R ·X(σ) · R−1 · S−1,

= S · Y (σ) · S−1 (sine R ∈ Int[X;Y ]),
= Y (σ) (sine S ∈ ComY ).We have shown that S · R ∈ Int[X;Y ], and sine f is linear and invertible, wehave that Int[X;Y ] and ComY are isomorphi as vetor spaes.Using the lemma, we an see that the dimension of Int[X;Y ] must be thesame as the dimension of ComY , and therefore we have the following expressionfor the dimension of Int[X;Y ].Proposition 38.

dim Int[X;Y ] =
∑

ν

z2
ν .Proof. To ompute the dimension of Int[X;Y ], we need to ompute the dimensionof ComY , whih an be aomplished simply by omputing the number of freeparameters in Equation B.8. Eah matrix Mzν

is free and yields z2
ν parameters,and summing aross all irreduibles ν yields the desired dimension.To selet an orthogonal intertwining operator, we will assume that we aregiven some invertible R ∈ Int[X;Y ] whih is not neessarily orthogonal (suh asa random element of the nullspae of K (Equation B.6)). To �nd an orthogonalelement, we will `modify' R to be an orthogonal matrix by applying an appro-priate rotation, suh that R ·RT = I. We begin with a simple observation about

R ·RT .Lemma 39. If both X and Y are orthogonal representations and R is an in-vertible member of Int[X;Y ], then the matrix R · RT is an element of ComY .Proof. Consider a �xed σ ∈ G. Sine R ∈ Int[X;Y ], we have that:
X(σ) = R−1 · Y (σ) ·R.It is also true that:

X(σ−1) = R−1 · Y (σ−1) ·R. (B.9)61



Algorithm 5: Pseudoode for omputing an orthogonal intertwining op-eratorsIntXYinput : A degree d orthogonal matrix representation X evaluated atpermutations (1, 2) and (1, . . . , n), and the multipliity zν , ofthe irreduible ρν in Xoutput: A matrix Cν with orthogonal rows suh that CT
ν ·⊕zνρν ·Cν = X

K1 ← Id×d ⊗ (⊕zνρν(1, 2))−X(1, 2)⊗ Id×d;1
K2 ← Id×d ⊗ (⊕zνρν(1, . . . , n))−X(1, . . . , n)⊗ Id×d;2
K ← [K1;K2]; //Stak K1 and K23
v ← SparseNullspae(K, z2

ν

); //Find the d2
ν-dimensional nullspae4

R← Reshape(v; zνdν , d); //Reshape v into a (zνdν)× d matrix5
M ← KronekerFators(R ·RT); //Find M suh that R ·RT = M ⊗ Idν

6
Sν ← Eigenvetors(M) ;7
Cν ← ST

ν · R ;8 NormalizeRows(Cν);9Sine X(σ) and Y (σ) are orthogonal matries by assumption, Equation B.9beomes:
XT (σ) = R−1 · Y T (σ) ·R.Taking transposes,
X(σ) = RT · Y (σ) · (R−1)T .We now multiply both sides on the left by R, and on the right by RT ,

R ·X(σ) ·RT = R ·RT · Y (σ) · (R−1)T · RT

= R ·RT · Y (σ).Sine R ∈ Int[X;Y ],
Y (σ) ·R ·RT = R ·RT · Y (σ),whih shows that R ·RT ∈ ComY .We an now state and prove our orthogonalization proedure, whih worksby diagonalizing the matrix R · RT . Due to its highly onstrained form, theproedure is quite e�ient.Theorem 40. Let X be any orthogonal group representation of G and Y anequivalent orthogonal irreduible deomposition (As in Equation B.5). Thenfor any invertible element R ∈ Int[X;Y ], there exists an (e�iently omputable)orthogonal matrix T suh that the matrix T ·R is an element of Int[X;Y ] and isorthogonal. 62



Proof. Lemma 39 and Equation B.8 together imply that the matrix R ·RT analways be written in the form
R ·RT = ⊕ν (Mzν

⊗ Idν
)Sine R ·RT is symmetri, eah of the matriesMzν
is also symmetri and musttherefore possess an orthogonal basis of eigenvetors. De�ne the matrix Szν

tobe the matrix whose olumns are the eigenvetors of Mzν
.The matrix S = ⊕ν(Szν

⊗ Idν
) has the following two properties:1. (ST · R)(ST · R)T is a diagonal matrix:Eah olumn of S is an eigenvetor of R · RT by standard properties ofthe diret sum and Kroneker produt. Sine eah of the matries, Szν

, isorthogonal, the matrix S is also orthogonal. We have:
(ST · R)(ST ·R)T = ST ·R · RT · S,

= S−1 · R · RT · S,
= D,where D is a diagonal matrix of eigenvalues of R · RT .2. ST ·R ∈ Int[X;Y ]:By Equation B.8, a matrix is an element of ComY if and only if it takesthe form ⊕ν(Szν

⊗ Idν
). Sine S an be written in the required form, soan ST . We see that ST ∈ ComY , and by the proof of Lemma 37, we seethat ST ·R ∈ Int[X;Y ].Finally, setting T = D1/2 · ST makes the matrix T ·R orthogonal (and doesnot hange the fat that T ·R ∈ Int[X;Y ]).We see that the omplexity of omputing T of is dominated by the eigenspaedeomposition of Mzν

, whih is O (z3
ν

). Pseudoode for omputing orthogonalintertwining operators is given Algorithm 5.
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